THE UNIVERSITY OF GEORGIA DESIGN AND CONSTRUCTION STANDARDS

INTRODUCTION

The design and construction or renovation of a facility for the University of Georgia (UGA) is a complex endeavor. Design Professionals and Contractors that work with UGA for the first time often find it challenging to navigate the system and to understand all of the requirements and nuances related to construction on a UGA campus.

The UGA Design & Construction Standards (Standards) document has been compiled to provide one location and resource for UGA Standards. The Office of University Architects for Facilities Planning (OUA) and the Facilities Management Division are the two main UGA departments that administer construction related projects. Other departments with critical roles in the execution of projects include Enterprise Information Technology Services, Environmental Safety Division, University Housing, and Real Estate and Space Management. The design, construction, and renovation requirements for all of these departments are included in the Standards. Since the OUA interfaces with all of these departments and is responsible for the major construction and renovation projects, the OUA leads the coordination and maintenance of the Standards.

The first section of the Standard discusses and illustrates planning and design principles. This is followed by design and construction information which is organized around specification section numbers. The UGA BIM Standard is included within the Standards. The content in the Standards are not full specifications but contain pertinent information related to both design and construction that shall be included in the Project.

This is not a stand-alone document and procedure manual. All of the Board of Regents of the University System of Georgia (BOR) requirements remain applicable. The purpose of this Standards is to document specific requirements to UGA campuses and this information supplements the BOR requirements.

All Design Professionals and Contractors that contract on behalf of the Board of Regents of the University System of Georgia with UGA are required to be in conformance with the Standards. As the Standards is updated there will be multiple dated versions of the Standards. The Design Professional and Contractor contracts will include reference to the Standards which is current at the time of contract execution and conformance with the Standards is legally binding.

As each project is unique, not every requirement in the Standards is appropriate for every project. For situations when the Design Professional and / or Contractor do not feel adherence to the Standards is appropriate, a request for a variance can be submitted to the Project Manager.

The Standards will continue to develop over time and input is always welcome. Please forward any comments to:

Gwynne Darden
Office of University Architects for Facilities Planning
706-542-3605
gmdarden@uga.edu
Table of Contents

Introduction

Table of Contents

University of Georgia Campus Planning Principles

Architectural Campus Planning Principles

- Introduction
- Existing UGA Building Styles
- The Application of American Campus Planning Principles to the University of Georgia
- Campus Building Typology
- Massing Diagrams
- Campus Façade Typology
- Conclusion

Site Campus Planning Principles

- Introduction
- Gateways & Edges
- Site Furnishings
- Paving
- Site Safety & Security
- Stormwater Management
- Landscape

Definitions and Terms

Division 00 – Procurement & Contracting Requirements

- 00 00 01 – Design Variance Requirement & Form
- 00 45 39 – Minority Business Enterprise
- 00 73 00.01 – UGA Special Conditions – Design Professional for Construction Management Project
- 00 73 00.02 – UGA Special Conditions – Design Professional Design-Bid-Build Project
- 00 73 00.03 – UGA Special Conditions – Contractor for Construction Manager Project
- 00 73 00.04 – UGA Special Conditions – Contractor for Design-Bid-Build Project
- 00 73 00.05 – UGA Special Conditions – Design Build Project

Division 01 – General Requirements

- 01 00 01 – Client & End User Interface for Projects Administered by OUA
- 01 00 02 – Client & End User Interface for Projects Administered by FMD
- 01 00 03 – Client & FMD Interface for Projects Administered by OUA
- 01 00 04 – Aesthetic Authority
- 01 00 05 – Design Professional Design Process Requirements
- 01 00 06 – Room & Space Numbering
- 01 00 07 – BIM Standards
- 01 00 07.01 – BEP Template
- 01 14 00 – Work Restrictions
- 01 14 13 – Access to Site – Right of Entry
- 01 29 00 – Payment Procedures
01 29 73 – Schedule of Values
01 31 00.01 – Access to Existing Documents
01 31 00.02 – Design Professional Documentation Requirements & Deliverables
01 31 19.13 – Pre-Construction Meetings
01 31 19.23 – Progress Meetings
01 31 23 – Project Website
01 32 16 – Construction Progress Schedule
01 33 00 – Submittal Procedures
01 35 13.01 – Special Project Procedures – Utility & Systems Outages
01 35 13.02 – Special Project Procedures – Roofing & Hot Work
01 35 23 – Owner Safety Requirements – Safety Barriers
01 35 46 – Indoor Air Quality Procedures – During Construction
01 41 00 – Regulatory Requirements
01 41 26.01 – Permit Requirements – Local Site Development Permits
01 41 26.02 – Permit Requirements – Local Utility Permits
01 41 26.03 – Permit Requirements – Construction Permits
01 45 33 – Special Inspections
01 52 13 – Construction Facilities – Field Office & Sheds
01 52 19 – Sanitary Facilities – Toilet Facilities
01 55 19 – Temporary Parking Areas
01 55 29 – Staging Areas – Storage
01 56 39 – Temporary Tree & Plant Protection
01 58 13 – Temporary Project Signage
01 60 00 – Product Requirements
01 65 00 – Product Delivery Requirements
01 74 19 – Construction Waste Management & Disposal
01 75 00 – Starting & Adjusting
01 78 00 – Closeout Submittals
01 78 46 – Extra Stock Materials
01 81 00 – Facility Performance Requirements

Division 02 – Existing Conditions
02 01 00 – Maintenance of Existing Conditions
02 22 00 – Existing Conditions Assessment
02 40 00 – Demolition

Division 03 – Concrete
03 00 00 – General Concrete Requirements

Division 04 – Masonry
04 00 00 – General Masonry Requirements

Division 05 – Metals
05 52 00 – Metal Railings

Division 06 – Wood, Plastics, & Composites
06 00 00 – General Wood, Plastics, & Composites Requirements
06 61 00 – Solid Surface Fabrications

Division 07 – Thermal & Moisture Protection

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>07 00 00</td>
<td>General Thermal Moisture Protection Requirements – Roof Drains & Roofs</td>
</tr>
<tr>
<td>07 13 13</td>
<td>Asphalt Shingles</td>
</tr>
<tr>
<td>07 41 10</td>
<td>Cooper & Zinc Sheet Metal Roofing</td>
</tr>
<tr>
<td>07 41 20</td>
<td>Steel Standing Seam Sheet Metal Roofing</td>
</tr>
<tr>
<td>07 52 13 11</td>
<td>Cold Adhesive Applied Atactic – Polypropylene (APP) Modified Bituminous Membrane Roofing</td>
</tr>
<tr>
<td>07 54 23</td>
<td>Thermoplastic-Polyolefin (TPO) Roofing</td>
</tr>
<tr>
<td>07 62 00</td>
<td>Sheet Metal Flashing and Gutters and Downspouts</td>
</tr>
<tr>
<td>07 71 23 13</td>
<td>Gutter Debris Guards</td>
</tr>
<tr>
<td>07 84 00</td>
<td>Fire Stopping</td>
</tr>
</tbody>
</table>

Division 08 – Openings

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>08 10 00</td>
<td>Doors and Frames</td>
</tr>
<tr>
<td>08 51 13</td>
<td>Aluminum Windows</td>
</tr>
<tr>
<td>08 71 00</td>
<td>Door Hardware</td>
</tr>
<tr>
<td>08 80 00</td>
<td>Glazing</td>
</tr>
<tr>
<td>08 83 00</td>
<td>Mirrors</td>
</tr>
</tbody>
</table>

Division 09 – Finishes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>09 00 00</td>
<td>General Finishes Requirements</td>
</tr>
<tr>
<td>09 20 00</td>
<td>Plaster & Gypsum Board</td>
</tr>
<tr>
<td>09 30 00</td>
<td>Tiling</td>
</tr>
<tr>
<td>09 50 00</td>
<td>Ceilings</td>
</tr>
<tr>
<td>09 60 00</td>
<td>Flooring</td>
</tr>
<tr>
<td>09 68 00</td>
<td>Carpeting</td>
</tr>
<tr>
<td>09 72 00</td>
<td>Wall Coverings</td>
</tr>
<tr>
<td>09 80 00</td>
<td>Acoustical Treatment</td>
</tr>
<tr>
<td>09 91 23</td>
<td>Interior Painting</td>
</tr>
</tbody>
</table>

Division 10 – Specialties

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 14 00</td>
<td>Signage</td>
</tr>
<tr>
<td>10 21 13</td>
<td>Toilet Compartments</td>
</tr>
<tr>
<td>10 26 13</td>
<td>Corner Guards</td>
</tr>
<tr>
<td>10 28 00</td>
<td>Toilet, Bath, and Laundry Accessories</td>
</tr>
<tr>
<td>10 73 43</td>
<td>Transportation Shelters</td>
</tr>
</tbody>
</table>

Division 11 – Equipment

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 52 13</td>
<td>Projection Screens</td>
</tr>
<tr>
<td>11 53 13</td>
<td>Laboratory Fume Hoods</td>
</tr>
<tr>
<td>11 82 26</td>
<td>Facility Waste Compactors</td>
</tr>
</tbody>
</table>

Division 12 – Furnishings

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 00 00</td>
<td>General Furnishings Requirements</td>
</tr>
<tr>
<td>12 05 13</td>
<td>Fabrics</td>
</tr>
<tr>
<td>12 20 00</td>
<td>Window Treatments</td>
</tr>
</tbody>
</table>
12 21 00 – Window Blinds
12 36 00 – Countertops
12 93 13 – Bicycle Racks
12 93 23 – Trash & Litter Receptacles
12 93 43.13 – Site Seating
12 93 46.13 – Ash Receptacles

Division 13 – Special Construction
13 12 00 – Fountains
13 34 19 – Metal Building Systems

Division 14 – Conveying Equipment
14 20 00 – Elevators

Division 21 – Fire Suppression
21 00 00 – General Fire Suppression Requirements

Division 22 – Plumbing
22 00 00 – General Plumbing Requirements
22 07 00 – Plumbing Insulation
22 10 00 – Plumbing Piping
22 40 00 – Plumbing Fixtures
22 45 00 – Emergency Plumbing Fixtures
22 66 53 – Laboratory Chemical – Waste & Vent Piping

Division 23 – Heating, Ventilating, & Air Conditioning
23 00 00 – General Mechanical Requirements (HVAC)
23 05 19 – Meters & Gages for HVAC Piping
23 05 23 – General-Duty Valves for HVAC Piping
23 05 29 – Hangers & Supports for HVAC Piping & Equipment
23 05 53 – Identification for HVAC Piping & Equipment
23 05 93 – Testing, Adjusting, & Balancing (TAB) for HVAC
23 07 13 – Duct Insulation
23 07 19 – HVAC Piping Insulation
23 08 00 – Commissioning of HVAC
23 09 23 – Building Automation & Temperature Control Systems (BAS)
23 20 00 – HVAC Piping & Pumps
23 21 13 – Hydronic Piping
23 21 23 – Hydronic Pumps
23 22 13 – Steam & Condensate Heating Piping
23 22 16 – Steam & Condensate Heating Piping Specialties
23 25 00 – HVAC Water Treatment
23 31 13 – Metal Ducts
23 33 13 – Dampers
23 38 16 – Fume Hoods
23 64 16.13 – Air-Cooled Centrifugal Water Chillers
23 64 16.16 – Water-Cooled Centrifugal Water Chillers
23 65 00 – Cooling Towers
23 73 00 – Indoor Central-Station Air-Handling Units

Division 26 – Electrical
26 00 00 – General Electrical Requirements
26 05 19 – Low-Voltage Electrical Power Conductors & Cables
26 05 26 – Grounding & Bonding for Electrical Systems
26 05 33.13 – Conduit for Electrical Systems
26 05 43 – Underground Ducts & Raceways for Electrical Systems
26 09 23 – Lighting Control Devices
26 09 36 – Modular Dimming Controls
26 09 43.16 – Addressable Fixture Lighting Control
26 22 00 – Low-Voltage Transformers
26 24 13 – Switchboards
26 24 16 – Panelboards
26 24 19 – Motor-Control Centers
26 29 23 – Variable-Frequency Motor Controllers
26 32 00 – Packaged Generator Assemblies
26 41.00 – Facility Lightning Protection
26 51 00 – Interior Lighting
26 56 00 – Exterior Lighting
26 56 13 – Lighting Poles & Standards
26 56 16 – Parking Lighting
26 56 19 – Roadway Lighting
26 56 29 – Site & Building Entry Lighting
26 56 33 – Walkway Lighting
26 56 36 – Flood Lighting

Division 27 – Communications
27 00 00 – General Communications Requirements
27 05 26 – Grounding & Bonding for Communication Systems
27 05 29 – Hangers & Supports for Communications Systems
27 05 36 – Cable Trays for Communications Systems
27 05 43 – Underground Ducts & Raceways for Communication Systems
27 05 46 – Utility Poles for Communication Systems
27 05 53 – Identification for Communication Systems
27 08 00 – Commissioning of Communications
27 11 16 – Communications Cabinets, Racks, Frames, & Enclosures
27 11 19 – Communications Termination Blocks & Patch Panels
27 11 23 – Communications Cable Management & Ladder Rack
27 13 13 – Communications Cooper Backbone Cabling
27 13 23 – Communications Optical Fiber Backbone Cabling
27 13 23.13 – Communications Optical Fiber Splicing & Terminations
27 13 33 – Communications Coaxial Backbone Cabling
27 13 43.43 – Cable Services Cabling
27 15 00 – Communications Horizontal Cabling
27 20 00.01 – Data Communications – Wireless
27 41 00 – General Audio-Visual System Requirements
27 41 00.01 – Audio-Visual Control System

Division 28 – Electronic Safety & Security
 28 13 00 – Access Control
 28 31 00 – Fire Detection & Alarm

Division 31 – Earthwork
 31 23 16.26 – Rock Removal – Rock Blasting

Division 32 – Exterior Improvements
 32 01 90.23 – Pruning
 32 14 16.13 – Brick Unit Paving – Ungrouted
 32 16 23 – Sidewalks
 32 31 13 – Chain-Link Fences & Gates
 32 32 29 – Timber Retaining Walls
 32 32 53 – Stone Retaining Walls
 32 39 13 – Manufactured Metal Bollards
 32 90 00 – Planting
 32 91 00 – Planting Preparation
 32 91 13.16 – Mulching
 32 92 00 – Turf & Grasses
 32 93 00 – Plants
 32 94 13 – Landscape Edging

Division 33 – Utilities
 33 00 00 – General Utilities Requirements
 33 10 00 – Water Utilities – Public Water Distribution System
 33 12 13.13 – Water Supply Backflow Preventer Assemblies
 33 30 00 – Sanitary Sewerage Utilities – Sanitary Sewer Collection System
 33 71 19 – Electrical Underground Ducts & Manholes
 33 80 00 – Communications Utilities
ARCHITECTURAL CAMPUS PLANNING PRINCIPLES
INTRODUCTION

The purpose of this section of the master plan document is to form a basis for the architectural character, composition, and typology of future buildings, groups of buildings and exterior spaces on the University of Georgia campus. This portion of the document aspires to be both a "mirror" and a "lamp." The buildings already existent on the Athens campus were observed, documented, and analyzed in the course of preparation of this study. Thus the suggestions for future architectural interventions made herein attempt to reflect the best architectural traditions evident on campus.

While many aspects of the University of Georgia's campus make it one of the most memorable compositions of buildings and open spaces to be found in the nation, it is not the purpose of this document to replicate the historic core in order to create a new architecture of empty nostalgia. The University of Georgia campus forms a collection of buildings from many different time periods and of various styles. There is not a unique "University of Georgia style" per se, rather the notable buildings built over the course of time, reflect both the needs of the moment and the traditions of architecture compatible with the context of the Athens campus.

It is hoped that the insights gleaned from a reading of this section will enable the campus community to better recognize and understand the architectural traditions of the campus, while simultaneously forming a touchstone for architects, landscape architects, planners, and other design working on future projects. Since innovation is always understood relative to some context, the traditions suggested by this portion of the document are intended to "light the way" for future projects.
EXISTING UGA BUILDING STYLES
VERNACULAR/GEORGIAN/NEO-CLASSICAL

Below are some examples of Vernacular/Georgian/Neo-Classical building styles found on the UGA campus and a brief indication of their characteristics.

Examples
- Old College
- New College
- Phi Kappa Hall
- Chapel
- Demosthenian Hall

Observations
- Domestic scale – unassuming character with exception of the Chapel
- Generally more wall than window
- Visual tension between proportions of opening and wall (i.e., the proportions of the wall are often more dominant than the proportions of window)
- Architectural elements are often integral to the building’s construction
- Vertical bay structure and vertically oriented openings
- Spartan vocabulary, restrained use of ornament
- Pragmatic elements modulate facade (e.g., downspout, chimneys, entrances)
- Facade is not overly “deep” except when a portico element is added to recognize entry
EXISTING UGA BUILDING STYLES

BEAUX-ARTS

Below are some examples of Beaux-Arts building styles found on the UGA campus and a brief indication of their characteristics.

Examples
- Peabody Hall
- Memorial Hall
- Business School

Observations
- Monumental scale compatible with domestic core of campus
- Range of proportion of window to wall
- System of ornamentation may not be directly tied to constructional technique, rather it is tied to broader cultural ideals related to building type (i.e., you know it is a “library” by its appearance, but what you see may or may not directly be related to how it was built)
- Use of sophisticated proportioning systems
- Division into 3 parts vertically and horizontally – clear hierarchy of parts
- Facade is “sculpted” in 3 dimensions as if carved from a block of clay
- Preference for symmetry, however complex overlapping local symmetries are sometimes used to produce localized picturesque effects
- Generally incorporates historical references
EXISTING UGA BUILDING STYLES
MODERN AND TRADITIONAL

Below are some examples of Modern and Traditional building styles found on the UGA campus and a brief indication of their characteristics.

Examples
- Library
- Fine Arts Building Additions
- Sanford Hall

Observations
- A more monumental scale
- Recognition of frame construction techniques in aesthetic of vertical surface
- Often more window than wall or an equivalent proportion of window and wall
- Facade is “layered” as a series of flat, planar surfaces composed within the constraints of a modest dimension.
- System of ornamentation is restrained, however attempts to relate constructional techniques to cultural ideals related to building type (i.e., you know it is a “library” by its appearance, and you have an idea of how it was built)
- Draws inspiration from history and ideas of contemporary life
EXISTING UGA BUILDING STYLES
MODERN AND CONTEMPORARY

Below are some examples of Modern and Contemporary building styles found on the UGA campus and a brief indication of their characteristics.

Examples
- Chemistry Annex
- Georgia Museum of Art

Observations
- Vertical surfaces are less likely to be designed as “facades”
- Overall massing dictates form – buildings less likely to participate in campus space making
- Openings are “slots” or “zones” where wall surface is omitted rather than an incised opening
- Character of building is particular to the whim of the architect, client, or donor
- Building does not necessarily communicate an idea of what it is or how it was built
- Unclear hierarchy of parts
- Scale is indeterminate
- Abstract form preferred over forms of “traditional building” (i.e., roofs, walls, doors, windows, are replaced with horizontal planes, vertical planes, and various kinds of apertures)
- Preference for asymmetrical massing and the picturesque over symmetry
- Notion of the Zeitgeist prevails, history and tradition are devalued – draws little upon immediate physical context
THE APPLICATION OF AMERICAN CAMPUS PLANNING PRINCIPLES TO THE UNIVERSITY OF GEORGIA

The planning principles exhibited on American campuses are truly a unique art form. While the traditions of campus planning in the United States are closely related to attitudes concerning building and the landscape developed between the 16th and 19th centuries in England, France, and Italy, the application of these principles to the built form of the university is an art form, which evolved principally in this country. The close relationship between built form and the landscape is a characteristic of campus planning that is the taproot of this art form. From Thomas Jefferson’s University of Virginia, to Saarenin’s Cranbrook Academy, this tradition remained unbroken until the Second World War.

One of the most readily identifiable characteristics of this tradition was the creation of exterior spaces, which could be likened to interior rooms. In the diagram illustrated in Figure 1, a prototypical room is drawn alongside a university quadrangle of similar proportions. Nearly everyone is familiar with the sense of enclosure and protection afforded by a room’s bounding surfaces – walls enclose space; windows admit light and air while permitting views to the exterior world; doors permit access; and typically there is some element of focus within the room, perhaps a hearth. It is readily evident that every element performs a role supporting the larger notion of “room.” That is, walls alone do not the room make. The interdependency of elements and the specialized tasks they play relegate elements of the room to hierarchical roles in the overall composition. That is a door to the room will serve to frame a view of the room’s principal feature – the hearth, and all along the corners of the room will be subservient to both the former and later elements.

Likewise, the exterior room of a campus quadrangle has features, which might be seen as analogous to that of a traditional interior room. The library may dominate the composition in much the same manner as the hearth, while a pair of buildings axially disposed across the quadrangle from this principal feature might serve the same threshold purposes as that of a door. One might readily see that a successful composition of a college quadrangle requires that the buildings operate in concert with one another. Sometimes buildings are called upon to play more assertive roles that of a “hero,” like the library, or the matching buildings forming the campus threshold. The heroic buildings, however, require substantial amounts of good “soldier” buildings to form the backdrop against which these more assertive buildings might be seen.

In planning and building a new campus or on a portion of an existing campus it is very important to understand the role that individual buildings are required to play. Too many heroic structures would be like a room full of guests all talking at the same time. Too few heroic buildings would be like a party where none of the guests ever arrived — a bit of a bore. In planning a successful campus composition, one seeks to strike a balance between the “heroes” and the “soldiers.” Experience has shown that every trustee, donor, president, dean, every department chair, or faculty member, usually like to view their “new building” as aspiring to be a “hero.” And, while much might be said of the heroic nature of the common foot soldier, it is recommended that the creation of heroic buildings on college campuses be limited to those building types which embody and relate the most universal and lofty aspirations of the entire institution — churches, libraries, places of assembly, etc.
Figure 1
CAMPUS BUILDING TYPOLOGY
THE EDGE-DEFINING TYPE

This building type often performs the role of the common foot soldier, but it may also take on heroic assignments. The generic configuration of the type is that of an elongated rectilinear volume. Most often entry is achieved on the center of one of the long faces, however edge entries, or entry from one of the narrow elevations is also possible (see facade guidelines). This building type commonly aligns its eaves and ridgelines, not the gable end, to the quadrangle thus reinforcing the geometry of this exterior room. A central corridor gives access to the rooms. Typically the corridor is double loaded, however in some instances a single loaded corridor may serve the needs of the program. The length of this building type may vary from 120 feet to 300 feet, while the width of the type is generally in the neighborhood of 45-90 feet. When this type exceeds the 90 foot width dimension natural lighting and ventilation of the interior spaces becomes impossible. Thus, depending upon the actual intended use of buildings of this type, care should be given to the width of the block.

There are a variety of methods for distributing this type in a campus plan (Figure 2).

- Illustrates this building type located as a central element on the long side of a campus quadrangle – the building performs both the role of edge definer and central focus.
- Much the same might be said about the positioning of the type in this configuration, however because the building alone forms the edge of the narrow side of a long quadrangle, it tends to take on a more heroic dimension.
- In this instance the type is paired to form both the wall to the quadrangle as well as a threshold to the campus.
- The final illustration of this type in context is interesting because it presents its end elevation to the major quadrangle of the campus while forming the edge of a new quadrangle behind the first building discussed in this drawing.

Examples of this building type on the UGA campus are Old College and New College, at other institutions, Nassau Hall, Princeton and Old East and Old West at UNC Chapel Hill. The type might accommodate housing, classrooms, laboratories, administrative activities, and a wide variety of other functions. It is typically the most prevalent variety of building to be found on college campuses. This type along with the Centralized Type form the two essential building blocks of campus architecture from which all other types might be derived.
This building type is often associated with a heroic posture within a campus plan, however, the type might defer to other buildings depending upon its specific context. The general configuration of the type is that of a compact rectilinear volume, however other platonic forms are also associated with this type circular, octagonal, or other centralized form. Entry is most often achieved on the center of one of the narrow facades and the type most often presents its gabled end to the quadrangle thereby gaining a certain amount of visual attention. Generally the type houses one large open space internally — often conceived of as a space of assembly. The dimensions of the type vary dramatically and should be determined based upon a mitigation of the concerns of the context against those of the building’s function.

There are a variety of methods for distributing this type in a campus plan, refer to Figure 3.

- Illustrates this building in a central position on the long edge of a campus quadrangle (a position analogous to that of a hearth in a room)
- The positioning of a pair of buildings around a principal campus axis forms both edge and threshold to the quadrangle.
- The placement of the type in this position affords four separate exposures – the building is seen in the round (from all sides). This later placement can present problems in servicing the building if the concerns of use are not properly mitigated against those of the campus context. A chapel or assembly hall might be well served by this location, while a dining hall might not work well with the context given an intensive service component of the program.

Examples of this building type on the UGA campus are the Chapel and the Phi Kappa building, at other institutions, the Rotunda at the University of Virginia and Whig and Clio Halls at Princeton. The type might accommodate various assembly activities: chapel, lecture hall, gymnasium, dining hall, etc. When used in conjunction with the Edge Defining Type in a single unified composition an unlimited variety of building forms might be created.
CAMPUS BUILDING TYPOLOGY
THE COMPOSITE TYPE

While many contemporary building programs might not be readily addressed by either the Edge-Defining or the Centralized Types alone, in combination the two building types form the essential characteristics of the Composite Type. It is more difficult to talk about general configurations of this type because the possible combinations and recombination of the basic “building blocks” of typology are limitless. For an insight into the variety of possibilities see, N.C. Curtis, Architectural Composition, Cleveland: Jansen, 1927.

The characteristics of how this building type might address a quadrangle are similar to those outlined in both of the previous two types. Again the actual dimension of the type may vary dramatically, so once again a mitigation of the contingencies of the site against those of building use are highly recommended.

Once again there are a variety of methods for distributing this type in a campus plan, Figure 4.

- Illustrates the simplest form of the type – a Centralized Type has been joined with two flanking Edge-Defining Types to form an articulated wall to the quadrangle. The central element provides accent to the quadrangle while the flanking volumes carry the “wall” of the space along the edge of the quad.

- This illustration of the type is a much more complex combination of the campus building blocks. A central space of assembly is aligned with the axis of the quadrangle and is used in combination with a series of edge-defining volumes. A forecourt is formed between the campus quadrangle and the central volume, while an automobile forecourt is formed by the wings, which extend downward at ninety-degree angles to the long axis of the quadrangle. To the far right, a service court is formed, and to the top, edge-defining types wrap the centralized volume to form an internal courtyard.

- In comparison to the previous example, this configuration of the type is very tame. In fact, the type is created by relocating the edge-defining elements at 90 degree angles to the position occupied in example one — thus, forming a forecourt. The advantage of this type is that large building programs can be accommodated in this configuration with out dimensionally abandoning a 70-foot maximum building wing width.

Examples of this building type on the UGA campus are the Fine Arts Building and the Business School, at other institutions — Bancroft and Mahan Halls at the United States Naval Academy, Annapolis. Most complex programs can be accommodated by this typology.
CAMPUS BUILDING TYPOLOGY
THE COMPOUND TYPE

In many cases contemporary programs call for very large footprints to accommodate specialized activities. While the advantage of these large footprints is that many activities can be located in an efficient proximity to one another, the liability is that these types of buildings often become hermetically sealed and connections between interior spaces and the exterior world become severed. Faculty, staff, and students can find themselves living out their entire academic life in these “mega structures” without ever stepping foot outside of their own domain. In short the danger of these “academic malls” are that they often do not contribute in an effective manner to the overall well being of the university. However, when properly designed these big buildings can indeed contribute well to the life of a campus.

Of primary interest is care given to issues of scale and proportion. Wherever possible, the massiveness of the building should be mitigated by elements in concert with the human scale of the campus environment. The Typical Plan in Figure 5 illustrates an Edge-Defining Type used as a frontispiece, or head house, for a much larger building mass. The site section diagrams located above the typical plan drawing also illustrate two techniques for masking the massiveness of the “large footprint” building. The uphill site illustrates a laboratory building nestled into the grade to minimize the impact of its height and girth, while the downhill site illustrates a parking structure carved into the hillside behind an academic building. The upper deck of this later building is then landscaped and treated as a garden terrace.

Again, there are a variety of methods for distributing this type in a campus plan, Figure 5.
 - Illustrates a very large laboratory building, which is flanked by two classroom buildings and headed up by an administrative/office wing, which mediates a connection to the quadrangle.
 - Is a center for continuing education, which presents a face both to the outside world (bottom edge) and to the campus quadrangle (right edge). These wings, joined by a rotund element mask the large parking structure located behind. Access to the parking structure is from the extreme right edge of the footprint. It should be noted that care would be given to the surface of the parking structure to create a “handsome” facade in concert with the vocabulary of the campus.
 - Illustrates a large student center with large dining halls, meeting rooms, ballrooms, and recreational spaces. The configuration presents a forecourt to the campus quadrangle using two Edge-Defining and one Centralized Type in order to mask the large footprints of the big assembly halls. To the far right a service court provides access for deliveries and waste removal.

Successful examples of this building type are Cabel Hall at the University of Virginia, the Physics and Astronomy Building at Johns Hopkins University, the Student Center at Carnegie Mellon, Barton Hall at Cornell University, and the original buildings on the campus of Duke University.
Figure 5

UGA DESIGN & CONSTRUCTION STANDARDS
DRAFT MAY 17, 2013

UNIVERSITY OF GEORGIA ARCHITECTURAL CAMPUS PLANNING PRINCIPLES
PAGE 15 OF 32
Plan in Context

Figure 5

MASSING DIAGRAMS

These series of diagrams are intended to suggest the limitless rational combinations and recombinations of the “building blocks” to form more complex compositions appropriate to elaborate programs. Each diagram builds upon the previous drawing suggesting a process of elaboration and combination. Note that the massing is not dependent upon a singular response to issues of symmetry/asymmetry, center/edge, base condition, or roof. Both designers and members of the campus community are encouraged to imagine their own formal inventions as an extension of this exercise.
CAMPUS FAÇADE TYPOLOGY

INTRODUCTION

Each of the facade variations illustrated herein derives from the previously mentioned observation, documentation, and analysis of the UGA campus. The proportions of openings and wall surfaces are derived from UGA traditions and may not be directly applicable to other campuses, however, many of the techniques for creating hierarchical “readings” of the facades are generic in nature.

Typically this study recognizes two generic architectural conditions — that of the wall and that of the frame. Both types are to be found alone and in combination on the UGA campus. Once again, the observations made herein are not an attempt to advocate specific styles, however, it is explicitly the intention of this portion of the document to encourage the development of rationale for the vertical surfaces. Thomas L. Schumacher’s, “Scull and the Mask,” as well as, “The Palladio Variations,” (Cornell Journal of Architecture, New York: Rizolli) are excellent starting points for discussion of facade making themes. Since a building on a college campus is likely to be kept in service for in excess of 100 years, it is important to give the design of facades considerable attention.
CAMPUS FAÇADE TYPOLOGY
THE PLANAR FAÇADE WITH SIMPLE OPENINGS

This type is derived in part from New College. The aesthetic derives from bearing wall construction techniques. The façade type is characterized by a series of regularly spaced windows of equal dimension. Not only do the windows act as “figure” in the composition of the façade, but the spaces between are also imbued with figural properties. That is, the windows are as interesting to the eye as the wall.

Windows read as discrete architectural elements positioned within the fabric of the wall. The head of the window is characterized by a lintel or flat arch, which occasionally serves as a location for ornamentation. The sills of the window are often stone and project from the surface of the wall. Following the logic of bearing wall construction, the general proportion of each window is that of a vertical rectangle, in this case a square root of two or golden section rectangle. The windows are typically double hung and subdivided into smaller panes.

In this façade type, the ground floor of the building is given special prominence by rustication or by belt coursing. This treatment permits the composition of the wall to relate well to the ground plane. Typical of many buildings on UGA’s campus, the building is capped by a gabled metal roof that is selectively articulated with masonry elements (chimneys, cupolas, etc.). There are examples of very successful buildings on the UGA campus in which the roof is not expressed. Typically, however, these buildings (such as Peabody Hall) terminate the wall with a cornice, or other element, which forms a distinct profile against the sky.

Figure 9
Planar Façade Variations

- In this series all of the openings in the façade are created through the use of equally spaced windows of identical dimension. Hierarchy is achieved by manipulating the reading of the wall surface and by adjusting the relationship between the opening and the wall.

Variation A
- This façade uses a “surround” treatment to distinguish the windows on the first floor from those on the ground and upper floor levels. This treatment may be useful in breaking up the monotony of a façade composed of regularly spaced windows. Additionally, the treatment gives distinction to the first story above the ground level as a place of prominence within the building.

Variation B
- This façade uses belt courses and rustication to produce a horizontal effect. This treatment may be an appropriate strategy for making tall facades to appear more in scale with a lower context. Additionally, the treatment may be appropriate when the building is intended at a “background” element in a composition wherein the intention is not to have the eye come to rest on this particular building.
Variation C
- This façade develops a strong reading of “center” by creating an intersecting gable at the midpoint of the composition. Addition of an attic element and the positioning of chimneys create a strong sense of center. This may be an appropriate treatment when the building is an important element of a group plan, such as the main building of a college, or a prominent building on an open space or quadrangle.

Variation D
- This façade is characterized by a development of localized centers at the extremities of the façade. The result is a dual centered façade. The use of a segmental gable that penetrates the eaves line of the roof, strategically positioned chimneys, and downspout, create an emphasis upon the edges of the overall composition. This treatment may be used in conjunction with elements of Variation C to create a hybrid that emphasizes both center and edge simultaneously. The type may be most appropriate for buildings with multiple entries, for buildings that attempt to downplay their hierarchical importance on a quadrangle or open space, or for buildings, which contain more than one academic department.
CAMPUS FAÇADE TYPOLOGY
THE PLANAR FAÇADE IN RELIEF

This type is very similar to the previous example, however it differs in that the surface is developed in terms of relief or depth of the wall surface. The amount of relief may vary from only a few inches to that of many feet (in the case of a freestanding portico). Through the introduction of relief, a hierarchical reading of the openings (windows and doors) can be developed.

Figure 11
Planar Facade in Relief Variations

- In this series all of the openings in the facade are created through a use of equally spaced windows of identical dimension. Hierarchy is achieved by manipulating the degree of surface relief either in front of or behind the dominant wall plane.

Variation A

- This facade uses a modestly scaled series of pilasters in front of the dominant wall surface to create a centralized reading and emphasis upon the entry. An element breaking the roof line (perhaps an elevator core) further emphasizes the centrality of the composition.

Variation B

- This facade creates a large centralized element by “excavating” or carving into the dominant wall plane in order to create a series of vertical openings articulated as pilasters. The vertical scale of this gesture suggests a more monumental and perhaps heroic character than Variation A.
Variation C
- This facade balances emphasis to both center and edge by once again “excavating” the dominant wall plane in order to create a rhythm of pilasters. The cadence of vertical openings is terminated at the left and right of the facade by a reassertion of the dominant plane and the creation of secondary entrances on the ground floor within these zones.

Variation C

Variation D
- This facade uses modestly scaled elements applied to the dominant plane of the facade in order to create emphasis at the edges of the composition (in this case the center is down played). By covering half of this diagram, one can imagine an asymmetrical application of this technique.

Variation D
CAMPUS FAÇADE TYPOLOGY
THE PLANAR FAÇADE WITH CLUSTERED OPENINGS

This type is likened to the first example in that there is little relief in the surface of the facade. It achieves its goals in establishing hierarchy by clustering openings of identical proportion and dimension. The type suggests a hybrid of frame and wall characteristics.
Planar Facade with Clustered Openings Variations
- In this series all of the openings in the facade are created through a use of windows of identical dimension. Hierarchy is achieved by manipulating the spacing of windows and other openings.

Variation A
- This facade develops a hierarchical reading by means of creating a cluster of windows at the center of the composition. The end bays of the composition terminate the composition by paring windows in order to create figural emphasis.

Variation B
- This facade develops a duality of reading — it emphasizes center through placement of the door and the symmetry around the center, but it creates a tension between center and edge because the large groupings of windows left and right compete for the eye’s attention.
Variation C
- This facade utilizes a more articulated symmetry to create a bipartite composition. The actual center of the facade is distinctly down played in favor of development of the dual figure groupings around a vertical axis. Dual doors on the ground level reinforce the notion of a two-part composition.

Variation D
- This facade emphasizes the edge elements through tiers of paired windows located in the end bays. The emphasis upon edge is further advanced by the position of the doors on the ground floor.
CAMPUS FAÇADE TYPOLOGY
THE FRAME FAÇADE IN RELIEF

This final example is similar to the previous example in that it employs clustering of openings, however it also utilizes modest relief in order to establish hierarchical readings.

Figure 15
Frame Facade in Relief Variations

- Hierarchy is developed by the manner in which the window or opening is surrounded and the degrees to which elements such as spandrels are expressed as materially separate from the actual window openings.

Variation A

- This facade develops a distinct reading of centrality by contrasting the scale of the figure grouping on center with those repetitive bays located to the left and the right of center. The door element is placed on center to further emphasize this portion of the composition.

Variation B

- This facade emphasizes the edge by employing large-scale figure groupings to the extreme right and left of the composition. As in the previous example, doors are associated with the large-scale figures in order to underscore the compositional strategy.
Variation C
- This facade is almost the same as Variation B, however the emphasis upon edge has been played down by utilizing large-scale figure groupings in the central range of the facade. The emphatic statement of edge seen in Variation B gives way to a more subtle suggestion of edge in Variation C.

Variation D
- This facade uses the smaller bays which were prevalent in Variation A in order to create edge emphasis. The end bays containing the doors feature spandrels which are distinguished from the material of the windows, thus presenting a greater degree of solidity and emphasis upon termination of the facade rhythm.
CONCLUSION

Architects commissioned for UGA buildings should not underestimate the challenge of designing within the shadow of the architects of UGA’s early campus buildings. To understand how to integrate a new project into the fabric of UGA’s campus, one needs to read thoroughly the overview of UGA’s history that summarizes the founding fathers’ intentions for the University.

- Stewardship of the land
- Balance of buildings and open space
- Consistent architectural language

The buildings of North Campus relate to one another along connecting axes. Buildings were aligned along open spaces forming an architectural edge enclosing exterior space and creating outdoor rooms. Walks and roads were generally laid out on axes, tying the campus together.

Essential to UGA’s growth is the infilling of future buildings within the existing campus such that clear, memorable open spaces are formed. In this regard, site selection is vital to the success of each new building, and the success to the campus as a whole.

Even more important is the successful integration of new buildings with the broad surrounding context. By definition, a campus is a collection of interrelated buildings and supporting facilities arranged in and around open space. The challenge, then, is for every UGA architect to think globally (campus wide) and to act locally (site specific).

Therefore, in initiating the design process for any building or open space on UGA’s campus, each design team should begin with a comprehensive look at the campus context and history. This first step should include an analysis of the site: its history, pedestrian and vehicular traffic, infrastructure, service, views and vistas, topography, vegetation, massing, and architectural character. In synthesizing this analysis, a primary goal of all building projects within UGA’s campus should be to create clear, simple open spaces and quadrangles that connect to other existing or proposed adjacent spaces. In this regard, buildings should be budgeted to extend their site work as far as is reasonably possible. At the schematic design phase, site plans should show the ground floor plan of the building within the overall campus context and adjacent open space.

These guidelines do not advocate the replication of the original campus buildings in the design of new buildings. Rather, they suggest the continuing evolution of the principles used in those original campus buildings. Using similar scale, proportions, form, materials, and hierarchy one can design in harmony with the existing grounds and buildings.

The design for both grounds and buildings should then refer to these guidelines in the spirit of both recollection and invention. Examples of this attitude can be seen at other campuses, acting as relevant paradigms for UGA’s architects and planners. Some of these examples include the images pictured at right.

In summary, the sustained implementation of UGA’s Campus Plan relies on reestablishing many of the principles that Charles Leavitt and the pre-WW II architects established on UGA’s campus. Leavitt
established in his 1906 physical master plan a balance of building and open space, and a stewardship of the land. Pre-WW II buildings on campus express a consistent, yet inventive architectural language. In this regard, UGA’s grounds and buildings should be like a good academic curriculum combining tradition and innovation.
SITE CAMPUS PLANNING PRINCIPLES
INTRODUCTION

The UGA Site Campus Planning Principles defines essential features unique to the UGA campus. These design standards contribute to pedestrian safety, way finding, campus iconography, and sense of place. They are important identifying characteristics of the 605-acre UGA campus. The standards are made available here to design professionals engaged on the UGA campus as a way to maximize efficiency and streamline parts of the design process.

The UGA Site Campus Planning Principles defines essential features that not only instruct architects, landscape architects, engineers, and other design professionals of the aesthetic make up of the University of Georgia campus, but also formulates the design criteria for future development, which essentially brings forth continuity and respect for elements that are deemed appropriate.

This section is intended as a guideline of pertinent design principles. Specific construction detail requirements may be found in Section V. – Construction Standards.
GATEWAYS AND EDGES

Stone entry gates, masonry piers, decorative iron fences, and lush landscape plantings are all elements the designer can use to define campus edges and property lines. They serve to visually and physically identify the campus boundaries. The campus gateways can be categorized in a hierarchy related to popularity of use. For instance, the historic University Arch gateway on north campus is a primary pedestrian entrance from the downtown central business district. The Herty Mall entrance is another primary pedestrian gateway. Both delineate campus edges to downtown and are traversed by a large number of people on a daily basis. The smaller opening to north campus from Broad Street, east of the Arch gateway is an example of a secondary entrance; therefore the design of the physical threshold is much simpler than the grand example of the Arch or Herty Mall entrance. Still less important or less traveled entrances to campus would be considered tertiary gateways, and will have a much simpler threshold design such as a lush landscape planting on either side of the entry point. On the UGA south campus, a primary gateway is the D.W. Brooks Mall entrance, incorporating an ornamental iron fence and granite rubble stone piers and walls. Traditionally, elements used for gateway construction on north campus include brick, cast iron fencing, and masonry stone. Central and south campus gateways are typically characterized by the use of granite rubble, cast iron fences, ornamental iron fences and lush landscape plantings. The cast iron fences are without exception reserved for the historic north and south extreme boundaries, whereas smaller scale, diminutive brick or stone piers are used along the campus edges in the central precinct. The northwest and northeast regions are newer precincts where gateway edges have not been identified. All proposed gateways and gateway materials should be approved on a case-by-case basis through OUA, taking careful consideration of existing surrounding context.

In addition to material selection, scale and proportion are the other most important design criteria when proposing future campus gateways. Proposed improvements should relate to human scale and existing campus context. Always, campus gateways should incorporate lush landscape plantings of trees and shrubs to further define boundaries and contribute to a pedestrian-scaled environment.
GATEWAYS AND EDGES
SITE WALLS AND SEAT WALLS

Whether for seating, retaining soil, or as a design feature, proposed site walls should be constructed of natural stone or brick. Grey Elberton granite is native to the Athens, Georgia area and should be utilized for wall construction. Low walls should be constructed entirely of granite rubble, and taller retaining walls should have a granite veneer over their structural components. Specific construction detail requirements for site walls and seat walls can be found in: Section V. – Construction Standards: Division 32 – Exterior Improvements: 32 32 29 – Stone Retaining Walls.

Granite Rubble Wall – Rankin M. Smith Sr. Student Athlete Academic Center

Granite Rubble Wall – Lamar Dodd School of Art & Georgia Museum of Art
GATEWAYS AND EDGES
CAST IRON & ALUMINUM FENCING

Cast iron fencing may be appropriate on North Campus, near historic structures, and in areas of campus that reflect the historic quadrangle layout of North Campus (e.g. D.W. Brooks Mall). If used adjacent to existing wrought iron fencing, care should be given to match the existing. Aluminum fencing is implemented on campus in areas to help distinguish spaces and provide security.

Cast Iron Fencing – Founders Garden

Aluminum Fencing – Lumpkin Street
SITE FURNISHINGS
TRANSPORTATION SHELTERS

Bus Shelters should be located where space is available and the volume of riders and traffic patterns justify their use. The shelters should not be obtrusive to their setting and should be illuminated for safety and partially enclosed to offer protection from wind and rain. Seating areas with trash receptacles should be provided within the shelter. Specific construction detail requirements for transportation shelters can be found in: Section V. – Construction Standards: Division 10 – Specialties: 10 73 43 – Transportation Shelters.

Transportation Shelter – Health Sciences Campus
PAVING
SIDEWALKS – UNIVERSITY OF GEORGIA ROADWAY

Typical pedestrian pathways for University of Georgia owned roadways should be constructed of scored concrete with installations of a tree planting beds along the road’s edge. Brick or granite accents should be used to denote significant locations, such as building entrances and major intersections. Specific construction detail requirements for University of Georgia sidewalks can be found in: Section V. – Construction Standards: Division 32 – Exterior Improvements: 32 16 23 – Sidewalks.
Typical pedestrian pathways for Athens-Clarke County owned roadways should be constructed of scored concrete with brick paver accents on edge.
Porous Concrete
Porous Concrete should be used whenever possible as a substitute for traditional paving. The pavement is made out of pieces of gravel and concrete that has holes, which allows the water to flow through. Underneath the pavement is a layer of gravel that will prevent the ground from becoming saturated and flooding. Examples of porous concrete can be found on Waddell Street and Reed Plaza.

Porous Pavers
Porous Pavers are set in sand and gravel beds. The gaps between the pavers are filled with course gravel that allows water to quickly flow through and infiltrate the soil.

Gravel Paving
Gravel paving also allows water to infiltrate quickly. This treatment is suited for paths that will be strictly limited to pedestrian use. The example shown on the left is from UGA’s Herty Field and is made out of recycled crushed brick.

Specific construction detail requirements for porous paving can be found in: Section V. – Construction Standards: Division 32 – Exterior Improvements: 32 14 16.13 – Brick Unit & Porous Paving.
To supplement the aesthetics of the University of Georgia, brick pavers are used as accents on pedestrian pathways. The use of inscribed “named” pavers is not permitted on campus grounds. Specific construction detail requirements for brick work can be found in: Section V. – Construction Standards: Division 32 – Exterior Improvements: 32 14 16.13 – Brick Unit & Porous Paving.

Brick Work – Reed Plaza

Brick Work (Porous Pavers) – Reed Plaza
The use of tactile concrete pavers with truncated domes to denote curb cuts and crosswalks should be employed in order to promote safety at intersections and comply with A.D.A. regulations.
The use of tactile concrete pavers with truncated domes to denote curb cuts and crosswalks should be employed in order to promote safety at intersections and comply with A.D.A. regulations.
Stairs should be constructed of concrete and should have concrete cheek walls. Exterior site stair risers shall be 6” and exterior stair treads shall be 14”. All portions of stairs shall comply with A.D.A. and other applicable regulations. Specific construction detail requirements for stairs and handrails can be found in: Section V. – Construction Standards: Division 05 – Metal Railings: 05 52 00 – Metal Railings.
PAVING
COMPLETE STREETS

When possible, opportunities to include the objectives and components of complete streets should be included in the project scope.

Complete Streets are safe, comfortable, and convenient for travel for everyone, regardless of age or ability – motorists, pedestrians, bicyclists, and public transportation riders. By routinely responding to the needs of people on foot, public transportation, and bicycles, walking, riding bikes, and riding buses will be safer and easier for everyone.

Complete streets can move more people while using the same amount of road space. Getting more productivity out of the existing road and public transportation systems is vital to reducing congestion. Providing travel choices – walking, bicycling, and public transportation – can reduce the demand for peak-hour travel in cars, the principle cause of daily congestion. A complete streets policy ensures that the entire right of way is planned, designed, and operated to provide safe access for all users.

Benefits
- Increase Capacity
- Improve Safety
- Better Health
- Economic Growth
- Lower Emissions
- Reduce Costs
- Smarter Growth
- Provide Choices

More Information
http://www.completestreets.org

Information provided by the National Complete Streets Coalition
PAVING
BICYCLE ROUTES

Dedicated bicycle routes should be clearly delineated from vehicular and pedestrian traffic through the use of painted lanes and easily recognizable symbols that conform with NACTO Urban Bikeway Design Guide, AASHTO Guide for the Development of Bicycle Facilities, and GDOT’s Guidelines. Along roads shared with motorized vehicles, a four-foot wide lane should be marked on each side of the pavement where possible. Where the road is too narrow to accommodate two bike lanes, a single lane will be designated. If conditions allow, the single lane will be located on the side of the road that runs uphill with the flow of traffic.

If the opportunity arises, the Design Professional should include bike lanes in their projects. This requirement includes instances where bike lane additions only allow for segments at a time.

University of Georgia 2011 Bicycle Facility Study
https://www.architects.uga.edu/sites/default/files/documents/UGA-Bikes_DRAFT.pdf

University of Georgia Bike Master Plan

Bicycle Lanes – North Campus
PAVING
BICYCLE ROUTES

PURPOSE

- Facilitate Implementation of UGA Physical Master Plan Guiding Principles
- Further Integrate Bike Facilities into the UGA Transportation System
- Promote Safe, Efficient and Convenient Campus Travel Options
- Encourage Connection with the Natural and Social Environment
- Improve Local Environmental Quality

LEGEND

- Limited Access Vehicles / Bike Shared
- Existing Bike Lanes
- Proposed Bike Lanes
- Recreational Trail
- "Share The Road" Signage
- Shared Pedestrian / Bikes
- Limited Access - Gated Roadway
When fire truck or emergency access requires a minimum pathway width that is aesthetically undesirable, grass pavers may be used to keep walk width to a minimum while still meeting code.
SITE SAFETY AND SECURITY
SECURITY BOLLARDS

For use as required to protect buildings from damage by service and emergency vehicles, such as at loading docks and mechanical rooms. For temporary barriers in pedestrian settings, an easy to install, simple post and chain device is required. Specific construction detail requirements for security bollards can be found in: Section V. – Construction Standards: Division 32 – Exterior Improvements: 32 39 13 – Manufactured Metal Bollards.
In light of the recent drought, it has become increasingly important to be proactive in the way UGA manages its natural resources. Rainwater harvesting allows the University to supply water for irrigation, cooling towers, and for toilet flushing even under water restrictions.

Underground Cistern – Paul D. Coverdell Center

Underground Cistern – Miller Learning Center

Above-Ground Cistern – Jackson Street Building

Above-Ground Cistern – Founders House
GREEN ROOFS

Green roofs are encouraged as part of new construction to diminish the urban heat island effect, energy bills, and stormwater discharge. They also create habitat for plants and animals and become an aesthetic enhancement to a building. Although there is currently no standard for green roofs, there are a few that exist on campus that may act as guides for future designs.

Green Roof – Geography & Geology Building

Green Roof – Science Library

Green Roof – Robert C. Wilson Pharmacy Building

Green Roof – Lamar Dodd School of Art

Green Roof – Tate Student Center
Instead of funneling a storm’s first flush into pipes, the following systems slow, capture, or infiltrate water back into the ground.

Bioretention

Bioretention systems, also known as rain gardens, are shallow depressions that capture, and then infiltrate water back into the soil. Examples of bioretention systems on campus can be found at Lumpkin Woods along Lumpkin Street, Carlton Street parking lots near the intersection with Sanford Drive, and the Grounds Department at Chicopee.

Enhanced Swale

A bioswale has an under layer of sand and gravel that promotes quick infiltration. Rocks or groundcovers can be used as a surface treatment. An example of a bioswale on campus can be found off of Lumpkin Street, directly south of Tanyard Creek.
LANDSCAPE
FENCING AND SCREENING

Fencing
Where fencing is required, either by code or for security purposes, black, vinyl-coated, chain link fence should be used. In regards to each situation, the height of the fence will be determined by the OUA.

Screen Walls
Screen fences should be constructed of brick of a type and pattern that match adjacent buildings.

Specific construction detail requirements for fencing and screening can be found in: Section V. – Construction Standards: Division 32 – Exterior Improvements: 32 31 13 – Chain-Link Fences and Gates.
The University of Georgia campus has streets of many sizes and functions. In order to provide a safe and aesthetically desirable walking environment, each general type of street will have a character that suits its function. The street types are as follows: Publicly Accessible Streets at the Edge of Campus, Publicly Accessible Streets on the Interior of Campus, and Limited Access Streets. Wherever possible, the landscape component of a streetscape should utilize a planted strip separating the sidewalk from the edge of the road. In general, streetscapes should have a simple, orderly appearance. Trees should be arranged in a linear fashion with turf or a low groundcover below. Street trees should be native shade trees, such as Oaks, that will grow over or can be pruned above the height of passing traffic. Designers can also utilize the ACC Tree Species list for references. Additionally, complete street guidelines and recommendations from the UGA 2011 Bicycle Facility Study should be incorporated when possible.
Quadrangles are defined green spaces that act as landmarks along circulation corridors (streetscapes). Buildings primarily define the edges of these spaces. The character of these spaces should be park-like, similar to the quadrangles of North Campus. The planting should be ground cover or grass, and shade trees with multiple paved walkways. Building entrances and other focal points should be accented with shrubs, native perennials. Seasonal color beds should be limited and require approval by UGA FMD Ground Department.
Naturalized spaces on the University of Georgia Campus are defined as areas dominated by informally arranged vegetation that connects the campus with its natural site elements. Landscape design in naturalized areas should utilize a palette of native plants selected for their compatibility with the micro-climatic conditions on the individual site.
DEFINITIONS AND TERMS

As-Built Documents
As-built documents are the collection of paper drawings or electronic drawings that typically reside in the contractor’s onsite trailer that contain mark-ups, annotations, and comments about changes that have been made to the contract documents during the construction phase.

Athens-Clarke County (ACC)
Athens-Clarke County, Georgia is where the University of Georgia Main Campus is located.

Bid (or Base Bid)
For the Design-Bid-Build project delivery method, this is the offer of a Bidder submitted on the prescribed form setting forth the Contract Sum for all activities required by the Contract Documents.

BIM (Building Information Modeling)
The term refers to the conveyance of the physical and functional attributes of a facility in a digital composition.

Board of Regents of the University System of Georgia (Board of Regents or BOR)
The Board of Regents of the University System of Georgia exercises general supervisory control over all Institutions of the University System and is identified in a Contractual Agreement as the “Owner” for whom the work is to be completed.

“Campus”
The term refers to the University of Georgia’s main campus in Athens, Georgia as well as all other Board of Regents UGA Property.

Center for Teaching and Learning (CTL)
The Center for Teaching and Learning is in Athens, Georgia at the University of Georgia main campus. The department serves faculty, administrators, and graduate teaching assistants in each of the University’s schools and colleges.

Client
For OUA managed projects, the OUA is the Design Professional or Contractor’s Client. For FMD managed projects, the FMD is the Design Professional or Contractor’s Client. The End-User is not the Design Professional or the Contractor’s Client.

Consultant or General Consultant
The person or entity, selected by the OUA or FMD and as identified in the Contract, provides guidance, counsel, and additional services to help facilitate and assist the decision-making process. By definition, the General Consultant is acknowledged as a Design Professional which is further defined in this section.

Contract
The written document that is the evidence of the Contract between the Owner and the Contractor.

Contract Documents
The Contract Documents include the executed Contract, any Component Construction Documents, the Construction Documents, and all Change Orders.
Contractor
The person or entity responsible for the proper completion of the activities described in the Contract Documents and who executes the Contract. The term “Contractor” means: General Contractor (GC) or Construction Manager (CM) or Design Builder (DB).

Cost of the Work
For Construction Manager and Design-Build project delivery methods, this is the sum of all allowable costs necessarily incurred and paid by the CM/GC or Design-Builder in the proper performance of the Work.

Design & Construction Standards (Standards)
The design principles, guidelines, and specifications for the University of Georgia that are deemed as the requisite for the Design Professional and Contractor.

Design Professional (DP)
The Architect or Engineer or Architectural or Engineering Firm selected by the Owner (i) for the design and preparation of Contract Documents governing the construction of a Project, or (ii) for Construction Contract Administration under the Contract Documents, or (iii) for both, all such services and the scope thereof to be set forth in the Design Professional Contract. The Design Professional is not an employee of the Owner, but rather a part of its business organization that is engaged or retained by it for the purpose of performing Design and Construction Administration Services for the project. The term “Design Professional” includes: Architects, Engineers, Surveyors, Designers, General Consultants, and other Consultants.

Drawings
The part of the Contract Documents prepared or approved by the Design Professional that graphically show the scope, extent, and character of the Work to be performed by the Contractor. Shop Drawings and other Contractor submittals are not Drawings as so defined.

End-User (Tenant)
The End-User is a person or entity that will occupy the Project at completion of the Work. The End-User is transient in nature and it is not unusual for the End-Users to change throughout the project. The End-User has no contractual relationship with the Contractor or Design Professional. Therefore, the Design Professional and Contractor are explicitly forbidden to communicate directly with the End-User without prior written approval. Examples of End-Users include: Academic Units, UGA Departments, and the Dean or other Personnel assigned by the Dean.

Enterprise Information Technology Services (EITS)
The Enterprise Information Technology Services is in Athens, Georgia at the University of Georgia main campus and is the central information technology organization.

Environmental Safety Division (ESD)
The Environmental Safety Division is in Athens, Georgia at the University of Georgia main campus. The Division concentrates on the welfare and safety of University faculty, students, and visitors.
Facilities Management Division (FMD)

Facilities Management Division is in Athens, Georgia at the University of Georgia main campus. FMD serves as the University of Georgia's Owner's Representative and is the Client for projects managed by FMD.

General Conditions

See Overhead Costs and Expenses

Integrated Project Delivery (IPD)

IPD is a project delivery method that integrates people, systems, business structure and practices into a process that collaboratively harness the talents and insights of all participants to optimize project results, increase value to the owner, reduce waste, and maximize efficiency through all phases of design, fabrication, and construction. IPD also describes a contractual relationship between Owner, Design Professional, and Contractor; however, this aspect of IPD is not applied to Board of Regents of the University System of Georgia projects.

IPD Methodology

IPD Methodology is a concept that uses methods from the IPD contacts, but does not have the contracts actually in place. It idealizes the concepts of integration of all team members to try and benefit the entire project.

IPD Methodology Plan

The IPD Methodology Plan is a declaration of how the project team will achieve the goals of an IPD Methodology. The plan can have several components. Two examples of an IPD Methodology Plan are: the completion of a Reverse Phase Schedule and Critical Path Modeling.

The Leadership in Energy and Environmental Design (LEED)

The Leadership in Energy and Environmental Design (LEED) Green Building Rating System is a suite of standards for environmentally sustainable construction. Based on a point system, a building can achieve different ratings based on the performance of the design, construction, and operation of the building.

Office of the University Architects for Facilities Planning (OUA)

OUA serves as the University of Georgia's Owner's Representative and is the Client for projects managed by OUA.

Overhead Costs and Expenses (General Conditions)

Contractor expenses as defined in the Contractor's Contract.

Owner

The Board of Regents, or a Unit of the University System of Georgia, identified as such in the Contract with whom the Contractor or Design Professional has entered into the Contract and for whom the Work is to be completed.

Owner's Representative

Owner may from time to time in writing designate one individual as the Owner's Representative on the Contractual Agreement. The Owner's Representation is the OUA and is further delegated to an individual or group of Project Managers.
Project
The Project is the total and complete undertaking for the Public Works Facility to be constructed under the Contract.

Project Manager
Unless specifically noted otherwise, for this Standards, Project Manager means an OUA or an FMD Project Manager; it is not referring to the Contractor’s Project Manager. For an OUA administered project, the OUA designates an individual Project Manager to coordinate and manage the Project in strict accordance with the Contract Documents and serves as the Representative of the Client, End-User, Owner, and UGA. For an FMD administered project, the FMD designates an individual Project Manager to coordinate and manage the Project in strict accordance with the Contract Documents and serves as the Representative of the Client, End-User, Owner, and UGA.

Specifications
The part of the Contract Documents consisting of written requirements for materials, equipment, systems, standards, and workmanship as applied to the Work, and certain administrative requirements and procedural matters applicable thereto. The term “Specifications” shall also include all written matter in the Project Manual or on the drawings and any Addenda or Change Orders thereto.

UGA Athletic Association, Inc. (UGAA)
The UGA Athletic Association, Inc. is in Athens, Georgia at the University of Georgia Main Campus and offers nationally competitive intercollegiate athletic programs. The UGAA leases land from the Board of Regents of the University System of Georgia.

UGA Fire Safety
UGA Fire Safety is a department within the Environmental Safety Division in Athens, Georgia at the University of Georgia main campus. The department assist with Georgia State Fire Marshal reviews and has provides certain life safety related services as further defined in 01 41 26.03 Permit Requirements – Construction Permits.

University of Georgia (UGA)
UGA is the Using Agency and an Institution of the Board of Regents of the University System of Georgia.

Using Agency
The State Entity for which the Project is being constructed. The term is defined as the University of Georgia, which is part of the Board of Regents of the University System of Georgia.

Using Agency’s Representative
For OUA managed projects, the Using Agency, UGA, has delegated OUA as the Using Agency’s Representative. For FMD managed projects, the Using Agency, UGA, has delegated FMD as the Using Agency’s Representative.
1. GENERAL
 A. The Project Variance Request Form must be submitted by the Design Professional and/or Contractor for any deviations from The University of Georgia Design & Construction Standards (Standards) and approved in writing. Inclusion of a deviation from the Standards, whether in drawings or specifications during any phase of design reviews, including shop drawing and submittal reviews, is not considered a Design Variance approval. It is the Design Professional and/or Contractor’s burden to point out deviations to OUA and to specifically request written variance approval prior to incorporating in the Project. The UGA is not responsible for identifying any deviations from the Standards.
 B. If the Design Professional deviates from the Standards without written approval, the deviation will be considered an error and a claim may be processed against the Design Professional’s professional liability insurance for reimbursement of the cost to meet the Standards. The amount of the claim may be reimbursed to the Owner through a unilateral change order.
 C. If the Contractor is responsible for design/building certain (or all) aspects of the project, and deviates from the Standards without a written approval, the Contractor’s deviation will be considered an error and a claim may be processed against the Contractor’s insurance. If the Contractor makes a change or substitution during the shop drawing and submittal process that is a deviation from the Standards, it is the burden of the Contractor, not the Design Professional, to seek a variance approval. The amount of the claim may be reimbursed to the Owner through a unilateral change order.
UNIVERSITY OF GEORGIA - DESIGN AND CONSTRUCTION STANDARDS

PROJECT VARIANCE REQUEST FORM

<table>
<thead>
<tr>
<th>PROJECT NAME:</th>
<th>DATE SUBMITTED:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGN PROFESSIONAL:</td>
<td>PROJECT NUMBER:</td>
</tr>
<tr>
<td>CONTRACTOR:</td>
<td>NAME OF UGA PROJECT MANAGER:</td>
</tr>
<tr>
<td>REQUESTED BY:</td>
<td>REQUESTOR'S OFFICE/ORGANIZATION:</td>
</tr>
</tbody>
</table>

SUBMISSION:

- [] SD
- [] DD
- [] CD
- [] SUBMITTAL
- [] CHANGE REQUEST
- [] OTHER: ________________

CURRENT DESIGN REQUIREMENT (REFERENCE THE APPLICABLE DESIGN AND CONSTRUCTION STANDARD):

BRIEF DESCRIPTION OF THE REQUESTED VARIANCE (INCLUDE THE PROPOSED ADDITION/DELETION/CHANGE TO DESIGN REQUIREMENT):

JUSTIFICATION:

REQUESTOR'S REPRESENTATIVE SIGNATURE: ______________________________________

UNIVERSITY OF GEORGIA - OFFICIAL USE ONLY

UNIVERSITY VARIANCE REQUEST ACTION:

- [] APPROVED
- [] DENIED

PROJECT MANAGER SIGNATURE: ______________________________________

DATE: ________________________
1. GENERAL
 A. It is the policy of the State of Georgia that minority business enterprises shall have the maximum opportunity to participate in the State purchasing process. Therefore, the State of Georgia encourages all minority business enterprises to compete for, win and receive contracts for goods, services, and construction. Also, the State encourages all companies to sub-contract portions of any State contract to minority business enterprises.

 i. The Small and Minority Business Contact person for the University of Georgia is:
 Ms. Annette M. Evans
 Procurement Officer
 University of Georgia, Procurement Office
 301 Business Services Building
 Athens, Georgia 30602
 706-542-2361 FAX: 706-542-7035

 ii. Contractor may contact Ms. Evans or any buyer for assistance with the preparation of Contractor bid or proposal, or to answer questions about the bid and award process. Specific questions about the bid specifications should be directed to the buyer that issued the bid request rather than to Ms. Evans.

 iii. The State of Georgia has a law which provides for an income tax credit on the State Tax Return to any company which subcontracts with a minority owned firm to furnish goods, property or services to the State of Georgia. Vendors should direct specific questions about this law to the Small and Minority Business Coordinators, 200 Piedmont Avenue, S.E., Atlanta, Georgia 30334, telephone 404-656-6315.
1. GENERAL
 A. UGA Special Conditions accompany the Board of Regents July 2010 versions of the contracts. Template forms are included in the Standard for reference. The Project Manager will edit the applicable template for each project and issue at the appropriate time and the version edited for the project will be incorporated into the Contract.
 B. There are three delivery methods and there is a UGA Special Conditions for each type of Contract. The following template is: UGA Special Conditions for Design Professional for Construction Management (CM/GC) Project.
University of Georgia Special Conditions
For Design Professional Contract
between Design Professional and Owner to be used with Board of Regents CM/GC Contract
(Construction Management)

Project No. ______________________

Project Name and Description: __

1. OWNER: Wherever the term Owner appears in the University of Georgia Special Conditions it shall mean the Board of Regents of the University System of Georgia by and on behalf of the Using Agency, The University of Georgia.

2. UGA DESIGN & CONSTRUCTION STANDARDS: The Design Professional shall comply with the requirements set forth in the “UGA DESIGN & CONSTRUCTION STANDARDS” dated ________ and available at www.architects.uga.edu/standards.
1. GENERAL

 A. UGA Special Conditions accompany the Board of Regents July 2010 versions of the contracts. Template forms are included in the Standard for reference. The Project Manager will edit the applicable template for each project and issue at the appropriate time and the version edited for the project will be incorporated into the Contract.

 B. There are three delivery methods and there is a UGA Special Conditions for each type of Contract. The following template is: UGA Special Conditions for Design Professional for Design Bid Build Project.
University of Georgia Special Conditions
For Design Professional Contract
between Design Professional and Owner to be used with Board of Regents Design-Bid-Build Contract

Project No._______________________

Project Name and Description:__

1. OWNER: Wherever the term Owner appears in the University of Georgia Special Conditions it shall mean the Board of Regents of the University System of Georgia by and on behalf of the Using Agency, The University of Georgia.

2. UGA DESIGN & CONSTRUCTION STANDARDS: The Design Professional shall comply with the requirements set forth in the “UGA DESIGN & CONSTRUCTION STANDARDS” dated ________ and available at www.architects.uga.edu/standards.
1. **GENERAL**

 A. UGA Special Conditions accompany the Board of Regents July 2010 versions of the contracts. Template forms are included in the Standard for reference. The Project Manager will edit the applicable template for each project and issue at the appropriate time and the version edited for the project will be incorporated into the Contract.

 B. There are three delivery methods and there is a UGA Special Conditions for each type of contract. The following template is: UGA Special Conditions for Contractor for Construction Management (CM/GC) Project.
University of Georgia Special Conditions
For Construction Management Agreement (CM/GC)

Project No. _______________________

Project Name and Description: ___

1. OWNER: Wherever the term Owner appears in the University of Georgia Special Conditions it shall mean the Board of Regents of the University System of Georgia by and on behalf of the Using Agency, The University of Georgia.

2. UGA DESIGN & CONSTRUCTION STANDARDS: The CM/GC shall comply with the requirements set forth in the “UGA DESIGN & CONSTRUCTION STANDARDS” dated ________ and available at www.architects.uga.edu/standards.

3. COPIES OF NOTICES: For General Requirements 1.1.5.2, in addition to the Owner and the Owner’s Representative, any notice, request, or demand filed by the CM/GC shall also be furnished to: Jessica Beri, Senior Procurement Specialist, University of Georgia Procurement Office, 0301A Business Services, 424 E. Broad Street, Athens, GA 30602.

4. COPIES OF CONTRACT DOCUMENTS TO CM/GC: Replace General Requirements 1.1.7.2 with:
“Without charge to the CM/GC, the Design Professional shall furnish to the CM/GC one set of completed Contract Documents in hardcopy, one set of electronic background and floor and reflected ceiling plan drawings, if requested, one copy in read-only electronic format. CM/GC shall pay for any additional requested sets and shall include cost in the CM/GC Overhead Cost.”

5. SAFETY & SECURITY: The costs for all references in the University of Georgia Special Conditions for safety & security shall be included in the CM/GC Overhead Cost. This includes, but is not limited to, fencing, barricades, traffic control and temporary signage.

6. STATE OF GEORGIA LICENSED SUB-CONTRACTORS:
 A. For any mechanical work on this project, at least one person installing mechanical work must have a valid and current certification of registration issued by the Georgia State Construction Industry Licensing Board to engage in prescribed mechanical activities.
 B. For any electrical work on this project, at least one person installing electrical work must have a valid and current certification of registration issued by the Georgia State Construction Industry Licensing Board to engage in prescribed electrical activities.
 C. For any plumbing work on this project, at least one person installing plumbing work must have a valid and current certification of registration issued by the Georgia State Construction Industry Licensing Board to engage in prescribed plumbing activities.
 D. Utility Contractors must be State of Georgia Licensed and comply with Georgia Code 43-14, HB 1300 and shall be on the Athens Clarke County approved list of utility contractors.
 E. Certified Welders: For any welding work on this project, all welders installing welding work must have a valid and current year certification of registration issued by the Georgia State Construction Industry Licensing Board to engage in prescribed welding activities. A University of Georgia Fire Safety Division Hot Work Permit is required.
7. **CLEAN WATER ACT, GEORGIA WATER QUALITY CONTROL ACT, AND GEORGIA SOIL EROSION AND SEDIMENTATION ACT:**

A. This project is located within a watershed that may drain into waters of the United States or the State of Georgia and storm water inlets and storm drainage associated with the project may drain directly into waters of the United States or the State of Georgia or lands within the State of Georgia. All such waters and lands shall be protected from the discharge of any pollutant. The CM/GC shall insure that all construction activities conducted on the project site comply with all applicable provisions of the Clean Water Act, the Georgia Water Quality Control Act, the Georgia Soil Erosion and Sedimentation Act, and any rules, regulations, local ordinances and permits promulgated or issued thereunder. The scope of this project may require coverage under the NPDES Storm Water Discharges Associated with Construction Activities permit and may require a Land Disturbance Activity permit issued by a local issuing authority.

B. The CM/GC shall develop, implement, and maintain a site specific spill response plan for the project that addresses loading and unloading, storage, and usage of containers and materials with the potential for spillage, leakage, or other discharges and a site specific erosion, sedimentation, and pollution control plan. The CM/GC shall maintain environmental spill kits on site at all times and shall insure that site personnel are properly and adequately trained on the use of the spill kits.

C. The CM/GC shall not conduct any construction activities within a twenty-five (25) foot buffer along the banks of any waters of the State of Georgia, unless a variance for this project has been issued by the Georgia Environmental Protection Division.

D. The CM/GC shall not conduct any construction activities within a fifty (50) foot buffer along the banks of any waters of the State of Georgia that is classified as trout waters, unless a variance for this project has been issued by the Georgia Environmental Protection Division.

E. The CM/GC shall employ Best Management Practices (BMP’s) which are consistent with and no less stringent than those practices contained in the most current “Manual for Erosion and Sediment Control in Georgia” published by the State Soil and Water Commission. If BMPs are not functioning as designed, the CM/GC shall immediately notify the Owner’s Representative and the Design Professional verbally and in writing. If the BMPs required by the contract documents are more stringent than those required by the most current “Manual for Erosion and Sediment Control in Georgia”, then the requirements of the contract shall apply.

F. The CM/GC site superintendent must have a current Georgia Soil and Water Conservation Commission Level 1A Certification. An individual with a current Georgia Soil and Water Conservation Commission Level 1A Certification must be on site at all times that land disturbing activities are being performed.

G. If the project requires a Land Disturbance Activity Permit, prior to starting any land disturbing activities, the CM/GC shall obtain the necessary Land Disturbing Activity Permit from the Local Issuing Authority and shall identify itself as the 24 hour contact. The CM/GC shall comply with all requirements of the Local Issuing Authority.

H. If the project requires coverage under the NPDES Storm Water Discharges Associated with Construction Activities Permit, the CM/GC shall:
 i. Sign the NPDES permit Notice of Intent promptly upon request of the Owner or Design Professional and prior to beginning any construction activity on site. The CM/GC and Owner shall be joint Primary Permittees. As the entity that has the primary day to day operational control of those activities at the construction site necessary to ensure
compliance with Erosion, Sedimentation and Pollution Control Plan requirements and permit conditions, the CM/GC shall be the Operator;

ii. Insure complete implementation of the Erosion Sedimentation & Pollution Control Plan (Plan).

iii. Within 24 hours of the installation of the initial sediment storage requirements and perimeter control BMPs, the CM/GC shall notify, in writing (email is acceptable), the Owner’s Representative and the Design Professional stating that the initial installation is complete and ready for inspection. The design professional who prepared the erosion, sedimentation and pollution control plan shall issue a letter of compliance or a letter listing deficiencies. The CM/GC shall correct any deficiencies documented within two (2) days of receipt of that letter and shall schedule any follow-up inspections necessary to comply with the requirements of the Permit, and insure that a letter of compliance is received from the Design Professional and placed in the site records.

iv. Insure daily inspections of vehicle entrances and exits and areas where petroleum products are used, stored, or handled are conducted and documented in a daily inspection report by Level 1A certified personnel. Daily Inspection reports must include:
 a. Name of inspector
 b. Date of inspection
 c. Observations
 d. Corrective actions taken
 e. Any incidents of noncompliance
 f. Signature of certified inspector
 g. Where reports do not identify incidents of noncompliance, a certification that the entrances and exits and areas where petroleum products are used, stored, or handled are in compliance with the Plan and the Permit must be included
 h. All daily inspection reports must be retained in the site records.

v. Maintain a daily rainfall log indicating the amount of rainfall at the site during each 24-hour period. The rainfall log must have an entry for each twenty-four hour period from the commencement of construction until the Notice of Termination is properly submitted.

vi. Maintain all records required by the Permit on site. The records shall be up to date, in chronological order and readily available for review. The records shall include at a minimum:
 a. A field set of as-built documents indicating any revisions to the civil and erosion sedimentation and pollution control drawings. Any revision on the field set of as-built drawings must be marked on the contract documents and shall be signed and dated by the engineer of record
 b. Completed NOI form with certified mail receipt (request from Design Professional or Owner’s Representative if CM/GC doesn’t have a copy)
 c. Documentation of fee payment with certified mail receipt (request from Design Professional or Owner’s Representative if CM/GC doesn’t have a copy)
 d. 7-day inspection letter of compliance from the Design Professional
 e. Daily, weekly, and post ½-inch rain event inspection reports generated by the CM/GC and/or the testing agency retained by Owner (“Owner’s Testing Agency”).
 f. Rainfall data
g. Turbidity sampling results with certified mail receipts issued by the Owner’s Testing Agency (request from Design Professional or Owner’s Representative if CM/GC doesn’t have a copy)

h. Summary reports of inspections and violation records with certified mail receipts (request from Design Professional or Owner’s Representative if CM/GC doesn’t have a copy). Upon signing the Notice of Termination, provide to the Project Manager an electronic scanned copy of all records a. thru h. listed above.

vii. Sign NPDES General Permit Notice of Termination promptly after the Design Professional and/or the Owner’s Testing Agency issue a written statement that the project site has undergone final stabilization and that all storm water discharges associated with the construction activity that were authorized by the Permit have ceased.

8. DUTY TO NOTIFY AND CORRECTING THE WORK

A. The CM/GC shall immediately document in the site records and notify the Owner’s Representative with a phone call and in writing, of the receipt of any warnings, citations, notices of permit violations or deficiencies, and/or stop work orders received from the Local Issuing Authority and/or the Georgia Environmental Protection Division and/or the United States Environmental Protection Agency. The CM/GC shall immediately provide copies of any written warnings or citations or other noncompliance notices received to the Owner’s Representative. Within 12 hours of receiving any warnings or citations, the CM/GC shall inform the Owner’s Representative in writing of the corrective actions that the CM/GC shall implement.

B. The CM/GC shall complete corrective action within 24 hours or prior to any impending rain events, whichever is sooner, of receiving any warnings, citations, letters, emails, or other notices citing violations or deficiencies, from the Local Issuing Authority, the Georgia Environmental Protection Division, the United States Environmental Protection Agency, Design Professional, or the Owner’s Testing Agency related to the Clean Water Act, the Georgia Water Quality Control Act, the Georgia Soil Erosion and Sedimentation Act, and/or the Land Disturbance Activities Permit or the NPDES Permit.

i. If the appropriate corrective action is beyond the expertise of the CM/GC or will involve a change in design, construction, operation, or maintenance, which has a significant effect on a BMP with a hydraulic component, the CM/GC must immediately notify the Owner’s Representative and the Design Professional and follow their direction for implementing the corrective action.

ii. If the appropriate corrective action is within the expertise of the CM/GC and does not involve a change in design, construction, operation, or maintenance, which has a significant effect on a BMP with a hydraulic component, the CM/GC shall implement the corrective action, note the change or action taken on the site Plan and have the revision on the site plan signed and dated by the Design Professional on their next visit to the site as being an acceptable and appropriate change or corrective action.

C. The General Requirements 3.6.2 Correcting the Work is modified as follows related to a corrective action not being completed by the CM/GC within 24 hours or prior to any impending rain events, whichever is sooner, of receipt of the warning, citation, or other form of documentation with deficiencies:

i. Any warning or citation issued by the Local Issuing Authority, the Georgia Environmental Protection Division, the United States Environmental Protection Agency, or a deficiency documented in the Owner’s Testing Agency’s report or the Design Professional, which
may be issued as an email, shall serve as the Notice of Non-Compliant Work referenced in the General Requirements 3.6.2.1.

ii. The General Requirements 3.6.2.6 The Owner’s Right to Correct Work shall be modified so that the ‘after three days written notice’ shall be replaced with ‘after 24 hours or prior to any impending rain events, whichever is sooner, after written notice’.

D. After completion of the required corrective actions, the CM/GC shall contact the Owner’s Representative and the entity that cited the deficiencies and request a re-inspection.

E. Any fines, penalties, or negotiated settlements resulting from the noncompliance with the Clean Water Act, the Georgia Water Quality Control Act, the Georgia Soil Erosion and Sedimentation Act, Land Disturbance Activities Permit, NPDES Permit, or any rules, regulations, local ordinances and permits promulgated or issued thereunder on the part of the CM/GC or any subcontractor shall be paid in full by the CM/GC with no cost to the Owner. The CM/GC may not use CM/GC Contingency or charge the Cost of the Work to pay for any fines, penalties or negotiated settlements.

9. DEFAULT AND STOP WORK / TERMINATE FOR CAUSE

A. The issuance of a citation or other noncompliance notice by the Design Professional, United States Environmental Protection Agency, the Georgia Environmental Protection Division, or a Local Issuing Authority related to the Clean Water Act, the Georgia Water Quality Control Act, or the Georgia Soil Erosion and Sedimentation Act, Land Disturbance Activities Permit, NPDES Permit, or any rules, regulations, local ordinances or permits promulgated or issued thereunder, is sufficient cause for the Owner to stop work for the entire project at the cost of the CM/GC until the citation deficiencies are remediated to the satisfaction of the Owner. For this situation, the General Requirements 5.1.2 Owner’s and Program Manager’s Right to stop work is modified as follows: “The Owner and / or the Owner’s Representative reserves the right, upon the issuance of a citation or other noncompliance notice by the Design Professional, United States Environmental Protection Agency, the Georgia Environmental Protection Division, or a Local Issuing Authority, to immediately stop the work of the entire project by oral direction, at the Owner’s or Owner’s Representative’s sole discretion, in conjunction with written notice provided to the CM/GC within 24 hours. The CM/GC shall be solely responsible for all costs incurred by the CM/GC in connection with the stop work order including any overtime or other expenses required to achieve the material completion and occupancy date. The CM/GC may not use CM/GC Contingency to offset any costs related to the stop work order. The CM/GC will not be granted a time extension for work time lost to a stop work order due to any such citation or other noncompliance notice.”

B. Non-compliance with any applicable portion of the Clean Water Act, the Georgia Water Quality Control Act, the Georgia Soil Erosion and Sedimentation Act, the Land Disturbance Activities Permit, the NPDES Permit, or any rules, regulations, local ordinances or permits promulgated or issued thereunder, is sufficient cause for the Owner to terminate the Contract for cause per General Requirements 5.3.2 Owner’s Right to Declare Default and / or Terminate Contract for Cause. The CM/GC’s failure to correct work for any warnings or citations within the 24 hours is sufficient cause for the Owner to terminate the Contract with cause per General Requirements 5.3.2 Owner’s Right to Declare Default and / or Terminate Contract for Cause.

F. Contingency or charge the Cost of the Work to pay for any fines, penalties or negotiated settlements.
10. **FIRE MARSHAL INSPECTIONS:** For General Requirements replace 3.6.4.3.1 in its entirety with the following: “The State Fire Marshal and the University of Georgia Fire Safety Division may make inspections at any time. It shall be the responsibility of the CM/GC to request an inspection at 80% percent completion and at 100% completion and to give notice when all items on the 100% inspection report have been completed. Written requests for inspections shall be made to the Owner’s Representative and shall not be made directly to the State Fire Marshal and /or the University of Georgia Fire Safety Division.”

11. **NORMAL WORKING TIMES:** It is customary that all work under this contract be performed on normal working days. Normal working days are defined as Monday through Friday from _____ am until _____ pm excluding Georgia State holidays. Work during other than normal times to include weekends, holidays and after-hours shall be coordinated with and subject to approval by the Owner. A minimum of 72-hours notice is required for the Owner to make all necessary arrangements and such work shall be scheduled at the convenience of the Owner.

12. **OFFICE FOR CONTRACT COMPLIANCE SPECIALIST (CCS):** Delete General Requirements 1.7.5.

13. **24 HOUR EMERGENCY CONTACT:** Prior to commencing work on site the CM/GC shall forward to the Owner’s Representative the 24 hour contact information for the project site. If the information changes at any time during the contract, the CM/GC shall immediately provide updated information. This contact information will be shared with the University of Georgia Police Department.

14. **CONSTRUCTION RESTRICTIONS:**

 A. **EXISTING FACILITIES:** The work to be performed under this contract is located within the University of Georgia’s (UGA) main campus area. Existing UGA facilities to include, but not limited to ______________________________ will be occupied during the life of this contract. The CM/GC shall schedule his work and coordinate his labor and equipment in such a manner as to NOT interfere with access to and operation of these facilities.

 B. **BUS OPERATIONS:** University of Georgia (UGA) bus system operates routes along ______________________ Streets. The Athens-Clarke County (ACC) bus system operates routes along ___________________ Streets. The CM/GC shall schedule his work and coordinate his labor and equipment in such a manner as to NOT interfere with access to and operation of these bus routes.

 C. **PEDESTRIAN WALKWAY:** The CM/GC is advised and cautioned that the _____________Street sidewalk is a major pedestrian corridor. The CM/GC shall schedule his work and coordinate his labor and equipment in such a manner as to NOT interfere with access to and movement along this pedestrian corridor. The CM/GC shall clearly designate walkways and provide protective measures to ensure the safe movement of pedestrians around the construction site.

 D. **NORFOLK-SOUTHERN RAILROAD:** The construction limits of this work are directly adjacent to and bordered on the eastern side by the Norfolk-Southern Railroad Right-of-Way. This is an active line with weekly rail movements. The CM/GC shall NOT encroach upon nor interfere with the railroad right-of-way and operations at any time.

 E. **ROADWAY & PARKING LOT CLOSINGS:** Roadway and parking lot use, blocking and closing shall be subject to approval by the Owner. A minimum of 72-hours notice is required for the Owner to make all necessary arrangements for this work, and such work shall be scheduled at the convenience of the Owner. Roadways and parking lots shall not be blocked for extended periods of time. CM/GC shall provide adequate traffic warning methods and devices in accordance with
Georgia Department of Transportation standards to warn motorist and pedestrians of any obstructions within the Right-of-Way of the roadway. CM/GC shall obtain land and road closure permits as required by the Owner through Athens-Clarke County.

F. RESIDENT HALL NOISE CONTROL: Beginning (Date), (Residence Hall name) shall be occupied. Effective (date), CM/GC shall not begin work prior to 9:00 am and shall cease work prior to 7:00 pm (weekday & weekend). In the event this contract work extends into final exam week, all work shall be suspended beginning with Reading Day through last day of Final Exams. (See UGA Master Schedule for exact dates).

G. The CM/GC shall make the construction site available and accessible to the University of Georgia Facilities Management Division and any other Owner retained contractors to complete work within the site to include repairs and renovation of existing buildings, utilities, hardscape and landscape. CM/GC shall coordinate his schedule with other contractors as approved by Owner to ensure a complete and usable facility.

H. Other projects under construction in this area include, but are not limited to ______________________________. CM/GC shall coordinate and schedule his work NOT to interfere with these projects.

15. GEORGIA ENVIRONMENTAL POLICY ACT: In accordance with Georgia state law, a Georgia Environmental Policy Act (GEPA) evaluation was completed and a determination made that the proposed project will not have any significant adverse environmental impacts. The CM/GC, in undertaking this work, becomes a steward of air, land, water, plants, animals and environmental, historical and cultural resources. As such the CM/GC shall perform all work in accordance with local, state and federal rules and regulations governing the protection of these resources.

16. CLEANING: For General Requirements 3.1.13.1, add following “Periodically during the course of the Work, and at least daily, all debris, trash or unsuitable materials resulting from construction removed from Owner’s property shall be disposed of legally in accordance with all applicable Federal, State and Local laws and codes.” CM/GC shall include associated cleaning costs in the CM/GC Overhead Cost. Debris shall not be placed in University of Georgia trash containers but instead shall be placed in dumpsters or other facilities provided by the CM/GC for this purpose.

17. HAZARDOUS MATERIALS:
 A. GENERAL: Any statement contained herein regarding the presence of hazardous materials (such as asbestos, lead based paint, Polychlorinated Biphenyls (PCBs) etc.) or absence of hazardous containing materials is based on the best current information in the Owner’s possession. Since asbestos and lead based paint were commonly used in construction materials, asbestos-containing, lead based paint containing materials or other hazardous materials may be encountered during the execution of work under this contract. The CM/GC shall exercise extreme care when demolishing, repairing or otherwise disturbing existing work. The CM/GC shall cease work immediately if suspected hazardous containing materials are encountered in the work, and notify the Owner in writing of each incident. The Owner shall cooperate with the CM/GC, and shall perform all requisite testing to confirm the presence or absence of hazardous containing materials for each reported incident. However, the Owner cannot guarantee that the site of the work included under this contract is completely free from hazardous materials. (See General Requirements 1.6.1).
B. SURVEY: A pre-construction hazardous materials survey was / was not conducted. A copy of the report may be obtained from the Owner’s Representative. The following is a brief summary of the report: ________________________________.

18. WORK ON PUBLIC STREETS & ROADS: Any work or activity on Streets that interferes with traffic movement to include, but not limited to, borings, pavement cuts, open trenches, pavement patches, re-surfacing, street closings, detours and one-way traffic shall be coordinated with the local Public Works Department and the Owner at least five working days hours in advance. The CM/GC shall be solely responsible for obtaining necessary permits from the local Public Works Department to include completing forms and paying all fees.

19. MARKED-UP CONSTRUCTION DOCUMENTS: For General Requirements 2.2.2.3 and 6.4.1.2.3, the CM/GC shall also provide the Owner’s Representative with one complete set of Marked-up (As-Built) Construction Documents as well as one read-only electronic version of the Marked-up Construction Documents.

20. OPERATIONS AND MAINTENANCE DATA AND INSTRUCTIONS AND TRAINING: In addition to the General Requirements 6.4.1.2.4, the CM/GC shall provide the Owner’s Representative with a read-only electronic version and 1 hardcopy of all written materials related to operations and maintenance. Training shall be completed prior to Material Completion of the project.

21. READ-ONLY ELECTRONIC VERSION: Any references to ‘read-only electronic version’ in the General Requirements and / or in the University of Georgia Special Conditions shall mean the in the latest version of the software format by Adobe and shall be a ‘.pdf’ file format.

22. SUBMITTALS:
 A. Any costs associated with submittals shall be included in the CM/GC Overhead Cost.
 B. ELECTRONIC SUBMITTALS: For General Requirements 2.2.5.2 electronic read-only submittals are acceptable. The CM/GC and the Design Professional shall stamp and sign the submittals, then scan and distribute the documents including electronic copies to the Owner’s Representative if requested. At the end of the project the CM/GC shall furnish one complete electronic set of all of the electronic read-only approved submittals to the Design Professional and the Owner’s Representative. In addition the CM/GC shall provide one hard copy set of the complete set of approved submittals to the Owner’s Representative.
 C. HARD COPY SUBMITTALS: For General Requirements 2.2.5.2, if electronic submittals are not used for this project, then the CM/GC shall submit four (4) hard copies of all required submittals to the Design Professional. The approved hard copies shall be distributed with 1 hard copy to the Design Professional; 1 copy to the Owner’s Representative; and 2 copies to CM/GC. At the end of the project the CM/GC shall furnish one complete electronic read-only set of all of the approved submittals to Owner’s Representative.
1. **GENERAL**

 A. UGA Special Conditions accompany the Board of Regents July 2010 versions of the contracts. Template forms are included in the Standard for reference. The Project Manager will edit the applicable template for each project and issue at the appropriate time and the version edited for the project will be incorporated into the Contract.

 B. There are three delivery methods and there is a UGA Special Conditions for each type of contract. The following template is: UGA Special Conditions for Contractor for Design Bid Build Project.
University of Georgia Special Conditions
For Design-Bid-Build

Project No. _______________________

Project Name and Description: __

1. OWNER: Wherever the term Owner appears in the University of Georgia Special Conditions it shall mean the Board of Regents of the University System of Georgia by and on behalf of the Using Agency, The University of Georgia.

2. UGA DESIGN & CONSTRUCTION STANDARDS: The Contractor shall comply with the requirements set forth in the “UGA DESIGN & CONSTRUCTION STANDARDS” dated ________ and available at www.architects.uga.edu/standards.

3. COPIES OF NOTICES: For General Requirements 1.1.5.2, in addition to the Owner and the Owner’s Representative, any notice, request, or demand filed by the Contractor shall also be furnished to: Jessica Beri, Senior Procurement Specialist, University of Georgia Procurement Office, 0301A Business Services, 424 E. Broad Street, Athens, GA 30602.

4. COPIES OF CONTRACT DOCUMENTS TO CONTRACTOR: Replace General Requirements 1.1.7.2 with: “Without charge to the Contractor, the Design Professional shall furnish to the Contractor one set of completed Contract Documents in hardcopy, one set of electronic background and floor and reflected ceiling plan drawings, if requested, one copy in read-only electronic format.”

5. SAFETY & SECURITY: The costs for all references in the University of Georgia Special Conditions for safety & security shall be included in the Bid. This includes, but is not limited to, fencing, barricades, traffic control and temporary signage.

6. STATE OF GEORGIA LICENSED SUB-CONTRACTORS:
 A. For any mechanical work on this project, at least one person installing mechanical work must have a valid and current certification of registration issued by the Georgia State Construction Industry Licensing Board to engage in prescribed mechanical activities.
 B. For any electrical work on this project, at least one person installing electrical work must have a valid and current certification of registration issued by the Georgia State Construction Industry Licensing Board to engage in prescribed electrical activities.
 C. For any plumbing work on this project, at least one person installing plumbing work must have a valid and current certification of registration issued by the Georgia State Construction Industry Licensing Board to engage in prescribed plumbing activities.
 D. Utility Contractors must be State of Georgia Licensed and comply with Georgia Code 43-14, HB 1300 and shall be on the Athens Clarke County approved list of utility contractors.
 E. Certified Welders: For any welding work on this project, all welders installing welding work must have a valid and current year certification of registration issued by the Georgia State Construction Industry Licensing Board to engage in prescribed welding activities. A University of Georgia Fire Safety Division Hot Work Permit is required.
7. **CLEAN WATER ACT, GEORGIA WATER QUALITY CONTROL ACT, AND GEORGIA SOIL EROSION AND SEDIMENTATION ACT:**

A. This project is located within a watershed that may drain into waters of the United States or the State of Georgia and storm water inlets and storm drainage associated with the project may drain directly into waters of the United States or the State of Georgia or lands within the State of Georgia. All such waters and lands shall be protected from the discharge of any pollutant. The Contractor shall insure that all construction activities conducted on the project site comply with all applicable provisions of the Clean Water Act, the Georgia Water Quality Control Act, the Georgia Soil Erosion and Sedimentation Act, and any rules, regulations, local ordinances and permits promulgated or issued thereunder. The scope of this project may require coverage under the NPDES Storm Water Discharges Associated with Construction Activities permit and may require a Land Disturbance Activity permit issued by a local issuing authority.

B. The Contractor shall develop, implement, and maintain a site specific spill response plan for the project that addresses loading and unloading, storage, and usage of containers and materials with the potential for spillage, leakage, or other discharges and a site specific erosion, sedimentation, and pollution control plan. The Contractor shall maintain environmental spill kits on site at all times and shall insure that site personnel are properly and adequately trained on the use of the spill kits.

C. The Contractor shall not conduct any construction activities within a twenty-five (25) foot buffer along the banks of any waters of the State of Georgia, unless a variance for this project has been issued by the Georgia Environmental Protection Division.

D. The Contractor shall not conduct any construction activities within a fifty (50) foot buffer along the banks of any waters of the State of Georgia that is classified as trout waters, unless a variance for this project has been issued by the Georgia Environmental Protection Division.

E. The Contractor shall employ Best Management Practices (BMP’s) which are consistent with and no less stringent than those practices contained in the most current “Manual for Erosion and Sediment Control in Georgia” published by the State Soil and Water Commission. If BMPs are not functioning as designed, the Contractor shall immediately notify the Owner’s Representative and the Design Professional verbally and in writing. If the BMPs required by the contract documents are more stringent than those required by the most current “Manual for Erosion and Sediment Control in Georgia”, then the requirements of the contract shall apply.

F. The Contractor site superintendent must have a current Georgia Soil and Water Conservation Commission Level 1A Certification. An individual with a current Georgia Soil and Water Conservation Commission Level 1A Certification must be on site at all times that land disturbing activities are being performed.

G. If the project requires a Land Disturbance Activity Permit, prior to starting any land disturbing activities, the Contractor shall obtain the necessary Land Disturbing Activity Permit from the Local Issuing Authority and shall identify itself as the 24 hour contact. The Contractor shall comply with all requirements of the Local Issuing Authority.

H. If the project requires coverage under the NPDES Storm Water Discharges Associated with Construction Activities Permit, the Contractor shall:

 i. Sign the NPDES permit Notice of Intent promptly upon request of the Owner or Design Professional and prior to beginning any construction activity on site. The Contractor and Owner shall be joint Primary Permittees. As the entity that has the primary day to day operational control of those activities at the construction site necessary to ensure compliance with Erosion, Sedimentation and Pollution Control Plan requirements and permit conditions, the Contractor shall be the Operator;
ii. Insure complete implementation of the Erosion Sedimentation & Pollution Control Plan (Plan).

iii. Within 24 hours of the installation of the initial sediment storage requirements and perimeter control BMPs, the Contractor shall notify, in writing (email is acceptable), the Owner’s Representative and the Design Professional stating that the initial installation is complete and ready for inspection. The design professional who prepared the erosion, sedimentation and pollution control plan shall issue a letter of compliance or a letter listing deficiencies. The Contractor shall correct any deficiencies documented within two (2) days of receipt of that letter and shall schedule any follow-up inspections necessary to comply with the requirements of the Permit, and insure that a letter of compliance is received from the Design Professional and placed in the site records.

iv. Insure daily inspections of vehicle entrances and exits and areas where petroleum products are used, stored, or handled are conducted and documented in a daily inspection report by Level 1A certified personnel. Daily Inspection reports must include:
 a. Name of inspector
 b. Date of inspection
 c. Observations
 d. Corrective actions taken
 e. Any incidents of noncompliance
 f. Signature of certified inspector
 g. Where reports do not identify incidents of noncompliance, a certification that the entrances and exits and areas where petroleum products are used, stored, or handled are in compliance with the Plan and the Permit must be included
 h. All daily inspection reports must be retained in the site records.

v. Maintain a daily rainfall log indicating the amount of rainfall at the site during each 24-hour period. The rainfall log must have an entry for each twenty-four hour period from the commencement of construction until the Notice of Termination is properly submitted.

vi. Maintain all records required by the Permit on site. The records shall be up to date, in chronological order and readily available for review. The records shall include at a minimum:
 a. A field set of as-built documents indicating any revisions to the civil and erosion sedimentation and pollution control drawings. Any revision on the field set of as-built drawings must be marked on the contract documents and shall be signed and dated by the engineer of record
 b. Completed NOI form with certified mail receipt (request from Design Professional or Owner’s Representative if Contractor doesn’t have a copy)
 c. Documentation of fee payment with certified mail receipt (request from Design Professional or Owner’s Representative if Contractor doesn’t have a copy)
 d. 7-day inspection letter of compliance from the Design Professional
 e. Daily, weekly, and post ½-inch rain event inspection reports generated by the Contractor and/or the testing agency retained by Owner (“Owner’s Testing Agency”).
 f. Rainfall data
 g. Turbidity sampling results with certified mail receipts issued by the Owner’s Testing Agency (request from Design Professional or Owner’s Representative if CM/GC doesn’t have a copy)
h. Summary reports of inspections and violation records with certified mail receipts (request from Design Professional or Owner’s Representative if CM/GC doesn’t have a copy). Upon signing the Notice of Termination, provide to the Project Manager an electronic scanned copy of all records a. thru h. listed above.

vii. Sign NPDES General Permit Notice of Termination promptly after the Design Professional and / or the Owner’s Testing Agency issue a written statement that the project site has undergone final stabilization and that all storm water discharges associated with the construction activity that were authorized by the Permit have ceased.

8. DUTY TO NOTIFY AND CORRECTING THE WORK

A. The Contractor shall immediately document in the site records and notify the Owner’s Representative with a phone call and in writing, of the receipt of any warnings, citations, notices of permit violations or deficiencies, and / or stop work orders received from the Local Issuing Authority and /or the Georgia Environmental Protection Division and / or the United States Environmental Protection Agency. The Contractor shall immediately provide copies of any written warnings or citations or other noncompliance notices received to the Owner’s Representative. Within 12 hours of receiving any warnings or citations, the Contractor shall inform the Owner’s Representative in writing of the corrective actions that the Contractor shall implement.

B. The Contractor shall complete corrective action within 24 hours or prior to any impending rain events, whichever is sooner, of receiving any warnings, citations, letters, emails, or other notices citing violations or deficiencies, from the Local Issuing Authority, the Georgia Environmental Protection Division, the United States Environmental Protection Agency, Design Professional, or the Owner’s Testing Agency related to the Clean Water Act, the Georgia Water Quality Control Act, the Georgia Soil Erosion and Sedimentation Act, and / or the Land Disturbance Activities Permit or the NPDES Permit.

i. If the appropriate corrective action is beyond the expertise of the Contractor or will involve a change in design, construction, operation, or maintenance, which has a significant effect on a BMP with a hydraulic component, the Contractor must immediately notify the Owner’s Representative and the Design Professional and follow their direction for implementing the corrective action.

ii. If the appropriate corrective action is within the expertise of the Contractor and does not involve a change in design, construction, operation, or maintenance, which has a significant effect on a BMP with a hydraulic component, the Contractor shall implement the corrective action, note the change or action taken on the site Plan and have the revision on the site plan signed and dated by the Design Professional on their next visit to the site as being an acceptable and appropriate change or corrective action.

C. The General Requirements 3.4.1 Correcting the Work is modified as follows related to a corrective action not being completed by the Contractor within 24 hours or prior to any impending rain events, whichever is sooner, of receipt of the warning, citation, or other form of documentation with deficiencies:

i. Any warning or citation issued by the Local Issuing Authority, the Georgia Environmental Protection Division, the United States Environmental Protection Agency, or a deficiency documented in the Owner’s Testing Agency’s report or the Design Professional, which
may be issued as an email, shall serve as the Notice of Non-Compliant Work referenced in the General Requirements 3.4.1.1.

ii. The General Requirements 3.4.1.6. The Owner’s Right to Correct Work shall be modified so that the ‘after three days written notice’ shall be replaced with ‘after 24 hours or prior to any impending rain events, whichever is sooner, after written notice’.

D. After completion of the required corrective actions, the Contractor shall contact the Owner’s Representative and the entity that cited the deficiencies and request a re-inspection.

E. Any fines, penalties, or negotiated settlements resulting from the noncompliance with the Clean Water Act, the Georgia Water Quality Control Act, the Georgia Soil Erosion and Sedimentation Act, Land Disturbance Activities Permit, NPDES Permit, or any rules, regulations, local ordinances and permits promulgated or issued thereunder on the part of the Contractor or any subcontractor shall be paid in full by the Contractor with no cost to the Owner. The Contractor may not request a Change Order to pay for any fines, penalties or negotiated settlements.

9. DEFAULT AND STOP WORK / TERMINATE FOR CAUSE

A. The issuance of a citation or other noncompliance notice by the Design Professional, United States Environmental Protection Agency, the Georgia Environmental Protection Division, or a Local Issuing Authority related to the Clean Water Act, the Georgia Water Quality Control Act, or the Georgia Soil Erosion and Sedimentation Act, Land Disturbance Activities Permit, NPDES Permit, or any rules, regulations, local ordinances or permits promulgated or issued thereunder, is sufficient cause for the Owner to stop work for the entire project at the cost of the Contractor until the citation deficiencies are remediated to the satisfaction of the Owner. For this situation, the General Requirements 5.1.2 Owner’s Right to stop work is modified as follows: “The Owner and / or the Owner’s Representative reserves the right, upon the issuance of a citation or other noncompliance notice by the Design Professional, United States Environmental Protection Agency, the Georgia Environmental Protection Division, or a Local Issuing Authority, to immediately stop the work of the entire project by oral direction, at the Owner’s or Owner’s Representative’s sole discretion, in conjunction with written notice provided to the Contractor within 24 hours. The Contractor shall be solely responsible for all costs incurred by the Contractor in connection with the stop work order including any overtime or other expenses required to achieve the material completion and occupancy date. The Contractor may not use Contractor Contingency to offset any costs related to the stop work order. The Contractor will not be granted a time extension for work time lost to a stop work order due to any such citation or other noncompliance notice.”

B. Non-compliance with any applicable portion of the Clean Water Act, the Georgia Water Quality Control Act, the Georgia Soil Erosion and Sedimentation Act, the Land Disturbance Activities Permit, the NPDES Permit, or any rules, regulations, local ordinances or permits promulgated or issued thereunder, is sufficient cause for the Owner to terminate the Contract for cause per General Requirements 5.3.2 Owner’s Right to Declare Default and / or Terminate Contract for Cause. The Contractor’s failure to correct work for any warnings or citations within the 24 hours is sufficient cause for the Owner to terminate the Contract with cause per General Requirements 5.3.2 Owner’s Right to Declare Default and / or Terminate Contract for Cause.

10. FIRE MARSHAL INSPECTIONS: For General Requirements replace 3.4.2.3.1 in its entirety with the following: “The State Fire Marshal and the University of Georgia Fire Safety Division may make inspections at any time. It shall be the responsibility of the Contractor to request an inspection at 80% percent completion and at 100% completion and to give notice when all items on the 100% inspection
report have been completed. Written requests for inspections shall be made to the Owner’s Representative and shall not be made directly to the State Fire Marshal and/or the University of Georgia Fire Safety Division.”

11. NORMAL WORKING TIMES: It is customary that all work under this contract be performed on normal working days. Normal working days are defined as Monday through Friday from _____ am until _____ pm excluding Georgia State holidays. Work during other than normal times to include weekends, holidays and after-hours shall be coordinated with and subject to approval by the Owner. A minimum of 72-hours notice is required for the Owner to make all necessary arrangements and such work shall be scheduled at the convenience of the Owner.

12. OFFICE FOR CONTRACT COMPLIANCE SPECIALIST (CCS): Delete General Requirements 1.7.5.

13. 24 HOUR EMERGENCY CONTACT: Prior to commencing work on site the Contractor shall forward to the Owner’s Representative the 24 hour contact information for the project site. If the information changes at any time during the contract, the Contractor shall immediately provide updated information. This contact information will be shared with the University of Georgia Police Department.

14. CONSTRUCTION RESTRICTIONS:
 A. EXISTING FACILITIES: The work to be performed under this contract is located within the University of Georgia’s (UGA) main campus area. Existing UGA facilities to include, but not limited to ______________________________ will be occupied during the life of this contract. The Contractor shall schedule his work and coordinate his labor equipment in such a manner as to NOT interfere with access to and operation of these facilities.
 B. BUS OPERATIONS: University of Georgia (UGA) bus system operates routes along ________________ Streets. The Athens-Clarke County (ACC) bus system operates routes along ________________ Streets. The Contractor shall schedule his work and coordinate his labor and equipment in such a manner as to NOT interfere with access to and operation of these bus routes.
 C. PEDESTRIAN WALKWAY: The Contractor is advised and cautioned that the ______________ Street sidewalk is a major pedestrian corridor. The Contractor shall schedule his work and coordinate his labor and equipment in such a manner as to NOT interfere with access to and movement along this pedestrian corridor. The Contractor shall clearly designate walkways and provide protective measures to ensure the safe movement of pedestrians around the construction site.
 D. NORFOLK-SOUTHERN RAILROAD: The construction limits of this work are directly adjacent to and bordered on the eastern side by the Norfolk-Southern Railroad Right-of-Way. This is an active line with weekly rail movements. The Contractor shall NOT encroach upon nor interfere with the railroad right-of-way and operations at any time.
 E. ROADWAY & PARKING LOT CLOSINGS: Roadway and parking lot use, blocking and closing shall be subject to approval by the Owner. A minimum of 72-hours notice is required for the Owner to make all necessary arrangements for this work, and such work shall be scheduled at the convenience of the Owner. Roadways and parking lots shall not be blocked for extended periods of time. Contractor shall provide adequate traffic warning methods and devices in accordance with Georgia Department of Transportation standards to warn motorist and pedestrians of any obstructions within the Right-of-Way of the roadway. Contractor shall obtain land and road closure permits as required by the Owner through Athens-Clarke County.
F. **RESIDENT HALL NOISE CONTROL:** Beginning *(Date), (Residence Hall name)* shall be occupied. Effective *(date)*, Contractor shall not begin work prior to 9:00 am and shall cease work prior to 7:00 pm (weekday & weekend). In the event this contract work extends into final exam week, all work shall be suspended beginning with Reading Day through last day of Final Exams. (See UGA Master Schedule for exact dates).

G. The Contractor shall make the construction site available and accessible to the University of Georgia Facilities Management Division and any other Owner retained contractors to complete work within the site to include repairs and renovation of existing buildings, utilities, hardscape and landscape. Contractor shall coordinate his schedule with other contractors as approved by Owner to ensure a complete and usable facility.

H. Other projects under construction in this area include, but are not limited to ________________________________. Contractor shall coordinate and schedule his work NOT to interfere with these projects.

15. **GEORGIA ENVIRONMENTAL POLICY ACT:** In accordance with Georgia state law, a Georgia Environmental Policy Act (GEPA) evaluation was completed and a determination made that the proposed project will not have any significant adverse environmental impacts. The Contractor, in undertaking this work, becomes a steward of air, land, water, plants, animals and environmental, historical and cultural resources. As such the Contractor shall perform all work in accordance with local, state and federal rules and regulations governing the protection of these resources.

16. **CLEANING:** For General Requirements 3.1.13.1, add following “Periodically during the course of the Work, and at least daily, all debris, trash or unsuitable materials resulting from construction removed from Owner’s property shall be disposed of legally in accordance with all applicable Federal, State and Local laws and codes.” Contractor shall include associated cleaning costs in the Bid. Debris shall not be placed in University of Georgia trash containers but instead shall be placed in dumpsters or other facilities provided by the Contractor for this purpose.

17. **HAZARDOUS MATERIALS:**

 A. **GENERAL:** Any statement contained herein regarding the presence of hazardous materials (such as asbestos, lead based paint, Polychlorinated Biphenyls (PCBs) etc.) or absence of hazardous containing materials is based on the best current information in the Owner’s possession. Since asbestos and lead based paint were commonly used in construction materials, asbestos-containing, lead based paint containing materials or other hazardous materials may be encountered during the execution of work under this contract. The Contractor shall exercise extreme care when demolishing, repairing or otherwise disturbing existing work. The Contractor shall cease work immediately if suspected hazardous containing materials are encountered in the work, and notify the Owner in writing of each incident. The Owner shall cooperate with the Contractor, and shall perform all requisite testing to confirm the presence or absence of hazardous containing materials for each reported incident. However, the Owner cannot guarantee that the site of the work included under this contract is completely free from hazardous materials. (See General Requirements 1.6.1).

 B. **SURVEY:** A pre-construction hazardous materials survey was / was not conducted. A copy of the report may be obtained from the Owner’s Representative. The following is a brief summary of the report:______________________________.
18. **WORK ON PUBLIC STREETS & ROADS:** Any work or activity on Streets that interferes with traffic movement to include, but not limited to, borings, pavement cuts, open trenches, pavement patches, re-surfacing, street closings, detours and one-way traffic shall be coordinated with the local Public Works Department and the Owner at least five working days in advance. The Contractor shall be solely responsible for obtaining necessary permits from the local Public Works Department to include completing forms and paying all fees.

19. **MARKED-UP CONSTRUCTION DOCUMENTS:** For General Requirements 2.2.2.3 and 6.4.1.2.3, the Contractor shall also provide the Owner’s Representative with one complete sets of Marked-up Construction Documents as well as one read-only electronic version of the Marked-up Construction Documents.

20. **OPERATIONS AND MAINTENANCE DATA AND INSTRUCTIONS AND TRAINING:** In addition to the General Requirements 6.4.1.2.4, the Contractor shall provide the Owner’s Representative with a read-only electronic version and 1 hardcopies of all written materials related to operations and maintenance. Training shall be completed prior Material Completion of the project.

21. **READ-ONLY ELECTRONIC VERSION:** Any references to ‘read-only electronic version’ in the General Requirements and / or in the University of Georgia Special Conditions shall mean the in the latest version of the software format by Adobe and shall be a ‘.pdf’ file format.

22. **SUBMITTALS:**

 A. Any costs associated with submittals shall be included in the Bid.

 B. **ELECTRONIC SUBMITTALS:** For General Requirements 2.2.5.2 electronic read-only submittals are acceptable. The Contractor and the Design Professional shall stamp and sign the submittals, then scan and distribute the documents including electronic copies to the Owner’s Representative if requested. At the end of the project the Contractor shall furnishes one complete electronic set of all of the electronic read-only approved submittals to the Design Professional and the Owner’s Representative. In addition the Contractor shall provide one hard copy set of the complete set of approved submittals to the Owner’s Representative.

 C. **HARD COPY SUBMITTALS:** For General Requirements 2.2.5.2, if electronic submittals are not used for this project, then the Contractor shall submit four (4) hard copies of all required submittals to the Design Professional. The approved hard copies shall be distributed with 1 hard copy to the Design Professional; 1 copy to the Owner’s Representative; and 2 copies to Contractor. At the end of the project the Contractor shall furnish one complete electronic read-only set of all of the approved submittals to Owner’s Representative.
1. GENERAL
 A. UGA Special Conditions accompany the Board of Regents July 2010 versions of the contracts. Template forms are included in the Standard for reference. The Project Manager will edit the applicable template for each project and issue at the appropriate time and the version edited for the project will be incorporated into the Contract.
 B. There are three delivery methods and there is a UGA Special Conditions for each type of contract. The following template is: UGA Special Conditions for Design Build Project.
University of Georgia Special Conditions
For Design Build Contract

Project No. _______________________

Project Name and Description: __

1. OWNER: Wherever the term Owner appears in the University of Georgia Special Conditions it shall mean the Board of Regents of the University System of Georgia by and on behalf of the Using Agency, The University of Georgia.

2. UGA DESIGN & CONSTRUCTION STANDARDS: The Design-Builder shall comply with the requirements set forth in the “UGA DESIGN & CONSTRUCTION STANDARDS” dated ________ and available at www.architects.uga.edu/standards.

3. COPIES OF NOTICES: For General Requirements 1.1.5.2, in addition to the Owner and the Owner’s Representative, any notice, request, or demand filed by the Design-Builder shall also be furnished to: Jessica Beri, Senior Procurement Specialist, University of Georgia Procurement Office, 0301A Business Services, 424 E. Broad Street, Athens, GA 30602.

4. SAFETY & SECURITY: The costs for all references in the University of Georgia Special Conditions for safety & security shall be included in the Design-Builder Overhead Cost. This includes, but is not limited to, fencing, barricades, traffic control and temporary signage.

5. STATE OF GEORGIA LICENSED SUB-CONTRACTORS:
 A. For any mechanical work on this project, at least one person installing mechanical work must have a valid and current certification of registration issued by the Georgia State Construction Industry Licensing Board to engage in prescribed mechanical activities.
 B. For any electrical work on this project, at least one person installing electrical work must have a valid and current certification of registration issued by the Georgia State Construction Industry Licensing Board to engage in prescribed electrical activities.
 C. For any plumbing work on this project, at least one person installing plumbing work must have a valid and current certification of registration issued by the Georgia State Construction Industry Licensing Board to engage in prescribed plumbing activities.
 D. Utility Contractors must be State of Georgia Licensed and comply with Georgia Code 43-14, HB 1300 and shall be on the Athens Clarke County approved list of utility contractors.
 E. Certified Welders: For any welding work on this project, all welders installing welding work must have a valid and current year certification of registration issued by the Georgia State Construction Industry Licensing Board to engage in prescribed welding activities. A University of Georgia Fire Safety Division Hot Work Permit is required.

6. CLEAN WATER ACT, GEORGIA WATER QUALITY CONTROL ACT, AND GEORGIA SOIL EROSION AND SEDIMENTATION ACT:
 A. This project is located within a watershed that may drain into waters of the United States or the State of Georgia and storm water inlets and storm drainage associated with the project may drain directly into waters of the United States or the State of Georgia or lands within the State of Georgia. All such waters and lands shall be protected from the discharge of any pollutant. The
Design-Builder shall insure that all construction activities conducted on the project site comply with all applicable provisions of the Clean Water Act, the Georgia Water Quality Control Act, the Georgia Soil Erosion and Sedimentation Act, and any rules, regulations, local ordinances and permits promulgated or issued thereunder. The scope of this project may require coverage under the NPDES Storm Water Discharges Associated with Construction Activities permit and may require a Land Disturbance Activity permit issued by a local issuing authority.

B. The Design-Builder shall develop, implement, and maintain a site specific spill response plan for the project that addresses loading and unloading, storage, and usage of containers and materials with the potential for spillage, leakage, or other discharges and a site specific erosion, sedimentation, and pollution control plan. The Design-Builder shall maintain environmental spill kits on site at all times and shall insure that site personnel are properly and adequately trained on the use of the spill kits.

C. The Design-Builder shall not conduct any construction activities within a twenty-five (25) foot buffer along the banks of any waters of the State of Georgia, unless a variance for this project has been issued by the Georgia Environmental Protection Division.

D. The Design-Builder shall not conduct any construction activities within a fifty (50) foot buffer along the banks of any waters of the State of Georgia that is classified as trout waters, unless a variance for this project has been issued by the Georgia Environmental Protection Division.

E. The Design-Builder shall employ Best Management Practices (BMP’s) which are consistent with and no less stringent than those practices contained in the most current “Manual for Erosion and Sediment Control in Georgia” published by the State Soil and Water Commission. If BMPs are not functioning as designed, the Design-Builder shall immediately notify the Owner’s Representative and the Design Professional verbally and in writing. If the BMPs required by the contract documents are more stringent than those required by the most current “Manual for Erosion and Sediment Control in Georgia”, then the requirements of the contract shall apply.

F. The Design-Builder site superintendent must have a current Georgia Soil and Water Conservation Commission Level 1A Certification. An individual with a current Georgia Soil and Water Conservation Commission Level 1A Certification must be on site at all times that land disturbing activities are being performed.

G. If the project requires a Land Disturbance Activity Permit, prior to starting any land disturbing activities, the Design-Builder shall obtain the necessary Land Disturbing Activity Permit from the Local Issuing Authority and shall identify itself as the 24 hour contact. The Design-Builder shall comply with all requirements of the Local Issuing Authority.

H. If the project requires coverage under the NPDES Storm Water Discharges Associated with Construction Activities Permit, the Design-Builder shall:
 i. Sign the NPDES permit Notice of Intent promptly upon request of the Owner or Design Professional and prior to beginning any construction activity on site. The Design-Builder and Owner shall be joint Primary Permittees. As the entity that has the primary day to day operational control of those activities at the construction site necessary to ensure compliance with Erosion, Sedimentation and Pollution Control Plan requirements and permit conditions, the Design-Builder shall be the Operator;
 ii. Insure complete implementation of the Erosion Sedimentation & Pollution Control Plan (Plan).
 iii. Within 24 hours of the installation of the initial sediment storage requirements and perimeter control BMPs, the Design-Builder shall notify, in writing (email is acceptable), the Owner’s Representative and the Design Professional stating that the initial installation is complete and ready for inspection. The design professional who prepared
the erosion, sedimentation and pollution control plan shall issue a letter of compliance or a letter listing deficiencies. The Design-Builder shall correct any deficiencies documented within two (2) days of receipt of that letter and shall schedule any follow-up inspections necessary to comply with the requirements of the Permit, and insure that a letter of compliance is received from the Design Professional and placed in the site records.

iv. Insure daily inspections of vehicle entrances and exits and areas where petroleum products are used, stored, or handled are conducted and documented in a daily inspection report by Level 1A certified personnel. Daily Inspection reports must include:
 a. Name of inspector
 b. Date of inspection
 c. Observations
 d. Corrective actions taken
 e. Any incidents of noncompliance
 f. Signature of certified inspector
 g. Where reports do not identify incidents of noncompliance, a certification that the entrances and exits and areas where petroleum products are used, stored, or handled are in compliance with the Plan and the Permit must be included
 h. All daily inspection reports must be retained in the site records.

v. Maintain a daily rainfall log indicating the amount of rainfall at the site during each 24-hour period. The rainfall log must have an entry for each twenty-four hour period from the commencement of construction until the Notice of Termination is properly submitted.

vi. Maintain all records required by the Permit on site. The records shall be up to date, in chronological order and readily available for review. The records shall include at a minimum:
 a. A field set of as-built documents indicating any revisions to the civil and erosion sedimentation and pollution control drawings. Any revision on the field set of as-built drawings must be marked on the contract documents and shall be signed and dated by the engineer of record
 b. Completed NOI form with certified mail receipt (request from Design Professional or Owner’s Representative if Design-Builder doesn’t have a copy)
 c. Documentation of fee payment with certified mail receipt (request from Design Professional or Owner’s Representative if Design-Builder doesn’t have a copy)
 d. 7-day inspection letter of compliance from the Design Professional
 e. Daily, weekly, and post ½-inch rain event inspection reports generated by the Design-Builder and/or the testing agency retained by Owner (“Owner’s Testing Agency”).
 f. Rainfall data
 g. Turbidity sampling results with certified mail receipts issued by the Owner’s Testing Agency (request from Design Professional or Owner’s Representative if Design-Builder doesn’t have a copy)
 h. Summary reports of inspections and violation records with certified mail receipts (request from Design Professional or Owner’s Representative if Design-Builder doesn’t have a copy). Upon signing the Notice of Termination, provide to the Project Manager an electronic scanned copy of all records a. thru h. listed above.
vii. Sign NPDES General Permit Notice of Termination promptly after the Design Professional and / or the Owner’s Testing Agency issue a written statement that the project site has undergone final stabilization and that all storm water discharges associated with the construction activity that were authorized by the Permit have ceased.

7. DUTY TO NOTIFY AND CORRECTING THE WORK

A. The Design-Builder shall immediately document in the site records and notify the Owner’s Representative with a phone call and in writing, of the receipt of any warnings, citations, notices of permit violations or deficiencies, and / or stop work orders received from the Local Issuing Authority and /or the Georgia Environmental Protection Division and / or the United States Environmental Protection Agency. The Design-Builder shall immediately provide copies of any written warnings or citations or other noncompliance notices received to the Owner’s Representative. Within 12 hours of receiving any warnings or citations, the Design-Builder shall inform the Owner’s Representative in writing of the corrective actions that the Design-Builder shall implement.

B. The Design-Builder shall complete corrective action within 24 hours or prior to any impending rain events, whichever is sooner, of receiving any warnings, citations, letters, emails, or other notices citing violations or deficiencies, from the Local Issuing Authority, the Georgia Environmental Protection Division, the United States Environmental Protection Agency, Design Professional, or the Owner’s Testing Agency related to the Clean Water Act, the Georgia Water Quality Control Act, the Georgia Soil Erosion and Sedimentation Act, and / or the Land Disturbance Activities Permit or the NPDES Permit.

i. If the appropriate corrective action is beyond the expertise of the Design-Builder or will involve a change in design, construction, operation, or maintenance, which has a significant effect on a BMP with a hydraulic component, the Design-Builder must immediately notify the Owner’s Representative and the Design Professional and follow their direction for implementing the corrective action.

ii. If the appropriate corrective action is within the expertise of the Design-Builder and does not involve a change in design, construction, operation, or maintenance, which has a significant effect on a BMP with a hydraulic component, the Design-Builder shall implement the corrective action, note the change or action taken on the site Plan and have the revision on the site plan signed and dated by the Design Professional on their next visit to the site as being an acceptable and appropriate change or corrective action.

C. The General Requirements 3.6.2 Correcting the Work is modified as follows related to a corrective action not being completed by the Design-Builder within 24 hours or prior to any impending rain events, whichever is sooner, of receipt of the warning, citation, or other form of documentation with deficiencies:

i. Any warning or citation issued by the Local Issuing Authority, the Georgia Environmental Protection Division, the United States Environmental Protection Agency, or a deficiency documented in the Owner’s Testing Agency’s report or the Design Professional, which may be issued as an email, shall serve as the Notice of Non-Compliant Work referenced in the General Requirements 3.6.2.1.

ii. The General Requirements 3.6.2.6 The Owner’s Right to Correct Work shall be modified so that the ‘after three days written notice’ shall be replaced with ‘after 24 hours or prior to any impending rain events, whichever is sooner, after written notice’.
D. After completion of the required corrective actions, the Design-Builder shall contact the Owner’s Representative and the entity that cited the deficiencies and request a re-inspection.

E. Any fines, penalties, or negotiated settlements resulting from the noncompliance with the Clean Water Act, the Georgia Water Quality Control Act, the Georgia Soil Erosion and Sedimentation Act, Land Disturbance Activities Permit, NPDES Permit, or any rules, regulations, local ordinances and permits promulgated or issued thereunder on the part of the Design-Builder or any subcontractor shall be paid in full by the Design-Builder with no cost to the Owner. The Design-Builder may not use Design-Builder Contingency or charge the Cost of the Work to pay for any fines, penalties or negotiated settlements.

8. DEFAULT AND STOP WORK / TERMINATE FOR CAUSE

A. The issuance of a citation or other noncompliance notice by the Design Professional, United States Environmental Protection Agency, the Georgia Environmental Protection Division, or a Local Issuing Authority related to the Clean Water Act, the Georgia Water Quality Control Act, or the Georgia Soil Erosion and Sedimentation Act, Land Disturbance Activities Permit, NPDES Permit, or any rules, regulations, local ordinances or permits promulgated or issued thereunder, is sufficient cause for the Owner to stop work for the entire project at the cost of the Design-Builder until the citation deficiencies are remediated to the satisfaction of the Owner. For this situation, the General Requirements 5.1.2 Owner’s and Program Manager’s Right to stop work is modified as follows: “The Owner and / or the Owner’s Representative reserves the right, upon the issuance of a citation or other noncompliance notice by the Design Professional, United States Environmental Protection Agency, the Georgia Environmental Protection Division, or a Local Issuing Authority, to immediately stop the work of the entire project by oral direction, at the Owner’s or Owner’s Representative’s sole discretion, in conjunction with written notice provided to the Design-Builder within 24 hours. The Design-Builder shall be solely responsible for all costs incurred by the Design-Builder in connection with the stop work order including any overtime or other expenses required to achieve the material completion and occupancy date. The Design-Builder may not use Design-Builder Contingency to offset any costs related to the stop work order. The Design-Builder will not be granted a time extension for work time lost to a stop work order due to any such citation or other noncompliance notice.”

B. Non-compliance with any applicable portion of the Clean Water Act, the Georgia Water Quality Control Act, the Georgia Soil Erosion and Sedimentation Act, the Land Disturbance Activities Permit, the NPDES Permit, or any rules, regulations, local ordinances or permits promulgated or issued thereunder, is sufficient cause for the Owner to terminate the Contract for cause per General Requirements 5.3.2 Owner’s Right to Declare Default and / or Terminate Contract for Cause. The Design-Builder’s failure to correct work for any warnings or citations within the 24 hours is sufficient cause for the Owner to terminate the Contract with cause per General Requirements 5.3.2 Owner’s Right to Declare Default and / or Terminate Contract for Cause.

9. FIRE MARSHAL INSPECTIONS: For General Requirements replace 3.6.4.3.1 in its entirety with the following: “The State Fire Marshal and the University of Georgia Fire Safety Division may make inspections at any time. It shall be the responsibility of the Design-Builder to request an inspection at 80% percent completion and at 100% completion and to give notice when all items on the 100% inspection report have been completed. Written requests for inspections shall be made to the Owner’s Representative and shall not be made directly to the State Fire Marshal and /or the University of Georgia Fire Safety Division.”
10. NORMAL WORKING TIMES: It is customary that all work under this contract be performed on normal working days. Normal working days are defined as Monday through Friday from _____ am until _____ pm excluding Georgia State holidays. Work during other than normal times to include weekends, holidays and after-hours shall be coordinated with and subject to approval by the Owner. A minimum of 72-hours notice is required for the Owner to make all necessary arrangements and such work shall be scheduled at the convenience of the Owner.

11. OFFICE FOR CONTRACT COMPLIANCE SPECIALIST (CCS): Delete General Requirements 1.7.5

12. 24 HOUR EMERGENCY CONTACT: Prior to commencing work on site the Design-Builder shall forward to the Owner’s Representative the 24 hour contact information for the project site. If the information changes at any time during the contract, the Design-Builder shall immediately provide updated information. This contact information will be shared with the University of Georgia Police Department.

13. CONSTRUCTION RESTRICTIONS:
 A. EXISTING FACILITIES: The work to be performed under this contract is located within the University of Georgia’s (UGA) main campus area. Existing UGA facilities to include, but not limited to __will be occupied during the life of this contract. The Design-Builder shall schedule his work and coordinate his labor and equipment in such a manner as to NOT interfere with access to and operation of these facilities.
 B. BUS OPERATIONS: University of Georgia (UGA) bus system operates routes along ___________________________Streets. The Athens-Clarke County (ACC) bus system operates routes along ________________ Streets. The Design-Builder shall schedule his work and coordinate his labor and equipment in such a manner as to NOT interfere with access to and operation of these bus routes.
 C. PEDESTRIAN WALKWAY: The Design-Builder is advised and cautioned that the _____________Street sidewalk is a major pedestrian corridor. The Design-Builder shall schedule his work and coordinate his labor and equipment in such a manner as to NOT interfere with access to and movement along this pedestrian corridor. The Design-Builder shall clearly designate walkways and provide protective measures to ensure the safe movement of pedestrians around the construction site.
 D. NORFOLK-SOUTHERN RAILROAD: The construction limits of this work are directly adjacent to and bordered on the eastern side by the Norfolk-Southern Railroad Right-of-Way. This is an active line with weekly rail movements. The Design-Builder shall NOT encroach upon nor interfere with the railroad right-of-way and operations at any time.
 E. ROADWAY & PARKING LOT CLOSINGS: Roadway and parking lot use, blocking and closing shall be subject to approval by the Owner. A minimum of 72-hours notice is required for the Owner to make all necessary arrangements for this work, and such work shall be scheduled at the convenience of the Owner. Roadways and parking lots shall not be blocked for extended periods of time. Design-Builder shall provide adequate traffic warning methods and devices in accordance with Georgia Department of Transportation standards to warn motorist and pedestrians of any obstructions within the Right-of-Way of the roadway. Design-Builder shall obtain land and road closure permits as required by the Owner through Athens-Clarke County.
 F. RESIDENT HALL NOISE CONTROL: Beginning (Date), (Residence Hall name) shall be occupied. Effective (date), Design-Builder shall not begin work prior to 9:00 am and shall cease work prior to 7:00 pm (weekday & weekend). In the event this contract work extends into final exam week,
all work shall be suspended beginning with Reading Day through last day of Final Exams. (See UGA Master Schedule for exact dates).

G. The Design-Builder shall make the construction site available and accessible to the University of Georgia Facilities Management Division and any other Owner retained contractors to complete work within the site to include repairs and renovation of existing buildings, utilities, hardscape and landscape. Design-Builder shall coordinate his schedule with other contractors as approved by Owner to ensure a complete and usable facility.

H. Other projects under construction in this area include, but are not limited to __________________________________. Design-Builder shall coordinate and schedule his work NOT to interfere with these projects.

14. GEORGIA ENVIRONMENTAL POLICY ACT: (if not applicable delete this entire section) In accordance with Georgia state law, a Georgia Environmental Policy Act (GEPA) evaluation was completed and a determination made that the proposed project will not have any significant adverse environmental impacts. The Design-Builder, in undertaking this work, becomes a steward of air, land, water, plants, animals and environmental, historical and cultural resources. As such the Design-Builder shall perform all work in accordance with local, state and federal rules and regulations governing the protection of these resources.

15. CLEANING: For General Requirements 3.1.13.1, add following “Periodically during the course of the Work, and at least daily, all debris, trash or unsuitable materials resulting from construction removed from Owner’s property shall be disposed of legally in accordance with all applicable Federal, State and Local laws and codes.” Design-Builder shall include associated cleaning costs in the Design-Builder Overhead Cost. Debris shall not be placed in University of Georgia trash containers but instead shall be placed in dumpsters or other facilities provided by the Design-Builder for this purpose.

16. HAZARDOUS MATERIALS:
 A. GENERAL: Any statement contained herein regarding the presence of hazardous materials (such as asbestos, lead based paint, Polychlorinated Biphenyls (PCBs) etc.) or absence of hazardous containing materials is based on the best current information in the Owner’s possession. Since asbestos and lead based paint were commonly used in construction materials, asbestos-containing, lead based paint containing materials or other hazardous materials may be encountered during the execution of work under this contract. The Design-Builder shall exercise extreme care when demolishing, repairing or otherwise disturbing existing work. The Design-Builder shall cease work immediately if suspected hazardous containing materials are encountered in the work, and notify the Owner in writing of each incident. The Owner shall cooperate with the Design-Builder, and shall perform all requisite testing to confirm the presence or absence of hazardous containing materials for each reported incident. However, the Owner cannot guarantee that the site of the work included under this contract is completely free from hazardous materials. (See General Requirements 1.6.1).
 B. SURVEY: A pre-construction hazardous materials survey was / was not conducted. A copy of the report may be obtained from the Owner’s Representative. The following is a brief summary of the report: ________________________________.

17. WORK ON PUBLIC STREETS & ROADS: Any work or activity on ______________________________________Streets that interferes with traffic movement to include, but not limited to, borings, pavement cuts, open trenches, pavement patches, re-surfacing, street
closings, detours and one-way traffic shall be coordinated with the local Public Works Department and the Owner at least five working days hours in advance. The Design-Builder shall be solely responsible for obtaining necessary permits from the local Public Works Department to include completing forms and paying all fees.

18. MARKED-UP CONSTRUCTION DOCUMENTS: For General Requirements 2.3.2.3 and 6.4.1.2.3, the Design-Builder shall also provide the Owner’s Representative with one complete sets of Marked-up Construction Documents as well as one read-only electronic version of the Marked-up Construction Documents.

19. OPERATIONS AND MAINTENANCE DATA AND INSTRUCTIONS AND TRAINING: In addition to the General Requirements 6.4.1.2.4, the Design-Builder shall provide the Owner’s Representative with a read-only electronic version and 1 hardcopies of all written materials related to operations and maintenance. Training shall be completed prior Material Completion of the project.

20. READ-ONLY ELECTRONIC VERSION: Any references to ‘read-only electronic version’ in the General Requirements and / or in the University of Georgia Special Conditions shall mean the in the latest version of the software format by Adobe and shall be a ‘.pdf’ file format.

21. SUBMITTALS:
 A. Any costs associated with submittals shall be included in the Design-Builder Overhead Cost.
 B. ELECTRONIC SUBMITTALS: For General Requirements 2.3.4.2 electronic read-only submittals are acceptable. The Design-Builder and the Design Professional shall stamp and sign the submittals, then scan and distribute the documents including electronic copies to the Owner’s Representative if requested. At the end of the project the Design-Builder shall furnish one complete electronic set of all of the electronic read-only approved submittals to the Design Professional and the Owner’s Representative. In addition the Design-Builder shall provide one hard copy set of the complete set of approved submittals to the Owner’s Representative.
 C. HARD COPY SUBMITTALS: For General Requirements 2.3.4.2, if electronic submittals are not used for this project, then the Design-Builder shall submit four (4) hard copies of all required submittals to the Design Professional. The approved hard copies shall be distributed with 1 hard copy to the Design Professional; 1 copy to the Owner’s Representative; and 2 copies to Design-Builder. At the end of the project the Design-Builder shall furnish one complete electronic read-only set of all of the approved submittals to Owner’s Representative.
1. **GENERAL**

 A. The Design Professional and Contractor’s client is the OUA. The End User specifically is not the Design Professional and Contractor’s client. The End User may at times provide input on desired program elements; however, OUA will provide final direction that represents UGA as a whole. The End User is in many ways a tenant and is focused on very particular aspects of the project. It is the role of OUA to appropriately incorporate the End User’s comments into the project.

 B. The Design Professional is explicitly forbidden to initiate contact directly with the End User without written permission by OUA. To do so is a breach of the Design Professional’s contract. In the event that the End User contacts the Design Professional directly, the Design Professional shall politely tell the End User to relay any information to OUA. The Design Professional shall also immediately inform OUA about the direct contact initiated by the End User.

 C. The Contractor is explicitly forbidden to initiate contact directly with the End User without written permission by OUA. It is acknowledged that in renovation projects where portions of existing buildings remain occupied the contractor may have interactions with the End User. However, the contractor shall not take any directions from the End User that modifies the contracted scope of work. If the Contractor takes direction from the End User it does so wholly at its own risk and if there is an associated cost there will not be any obligation to pay for the work. In the event that the End User contacts the Contractor directly, the Contractor shall politely tell the End User to relay any information to OUA. The Contractor shall also immediately inform OUA about the direct contact initiated by the End User.
1. GENERAL

A. The Design Professional and Contractor’s client is the FMD. The End User specifically is not the Design Professional and Contractor’s client. The End User may at times provide input on desired program elements; however, FMD will provide final direction that represents UGA as a whole. The End User is in many ways a tenant and is focused on very particular aspects of the project. It is the role of FMD to appropriately incorporate the End User’s comments into the project.

B. The Design Professional is explicitly forbidden to initiate contact directly with the End User without written permission by FMD. To do so is a breach of the Design Professional’s contract. In the event that the End User contacts the Design Professional directly, the Design Professional shall politely tell the End User to relay any information to FMD. The Design Professional shall also immediately inform FMD about the direct contact initiated by the End User.

C. The Contractor is explicitly forbidden to initiate contact directly with the End User without written permission by FMD. It is acknowledged that in renovation projects where portions of existing buildings remain occupied the contractor may have interactions with the End User. However, the contractor shall not take any directions from the End User that modifies the contracted scope of work. If the Contractor takes direction from the End User it does so wholly at its own risk and if there is an associated cost there will not be any obligation to pay for the work. In the event that the End User contacts the Contractor directly, the Contractor shall politely tell the End User to relay any information to FMD. The Contractor shall also immediately inform FMD about the direct contact initiated by the End User.
1. GENERAL

A. The Design Professional and Contractor’s client is the OUA. The Facilities Management Department specifically is not the Design Professional and Contractor’s client. The Facilities Management Department may at times provide input on desired design elements, however since OUA is responsible for the overall budget and schedule OUA will provide final direction that represents UGA as a whole. It is the role of OUA to appropriately incorporate the Facilities Management Department’s comments into the project.

B. The Design Professional is explicitly forbidden to initiate contact directly with the Facilities Management Department without written permission by OUA. To do so is a breach of the Design Professional’s contract. In the event that the Facilities Management Department contacts the Design Professional directly, the Design Professional shall politely tell the Facilities Management Department to relay any information to OUA. The Design Professional shall also immediately inform OUA about the direct contact initiated by the Facilities Management Department.

C. At times OUA may give written direction to the Design Professional so consultants may discuss design aspects specifically with the Facilities Management Department. When this occurs it is mandatory that the Design Professional documents the direct conversation with the Facilities Management Department and distributes the conversation summary with all parties including OUA.
1. **GENERAL**

 A. Aesthetic opinions and evaluations by a Design Professional are advisory only – and not binding on UGA. OUA reserves the right for final aesthetic judgment.
1. **GENERAL**

A. **Related Sections:**
 i. 01 31 00.02 – Design Professional Documentation Requirements & Deliverables
 ii. 01 81 00 – Facility Performance Requirements
 iii. 01 78 00 – Closeout Submittal

B. There are other Design Professional process requirements included throughout the Standards. At the beginning of most of the Division sections that are listed as ‘General Requirements’, for example “Division 23 00 00 – General Mechanical Requirements” includes additional and more specific design requirements related to mechanical.

C. **Design Intent Documentation:** The cover sheet of the mechanical, electrical, and plumbing drawings shall indicate design intent (narrative and metrics) descriptions of:
 i. Applicable codes standards used.
 ii. Narrative description of the scope of the work.
 iii. State design assumptions.
 iv. Design ambient and inside conditions.
 v. State the ventilation procedure used (including design occupancy and persons/sq. ft.). Refer to ASHRAE 62 - Paragraph 6 “Procedures”.
 vi. Total connected design load for all services/utilities.
 vii. Detailed layer by layer building envelope data used for design.
 viii. Overall building air balance diagram for all operating conditions.
 ix. Individual spaces air balance.
 x. Assumptions and provisions for future addition/expansion.
 xi. Spaces and processes requiring 24/7/365 cooling, humidity control, etc.
 xii. Building envelope assumptions (walls, roof, partitions, glass U-value and shading coefficient, etc.)
 xiii. List maximum noise levels of all HVAC equipment on schedules.
 xiv. All specific, critical, user defined requirements.

D. For Schematic Design the Design Professional shall include mechanical, electrical, and plumbing design narratives / outline specifications.

E. For Design Development (Preliminary Design) the Design Professional shall include mechanical, electrical, and plumbing design narratives / outline specifications, or the first draft of full specifications.

F. During Schematic Design, the Design Professional shall develop a minimum of three completely different design solutions for review. These shall be completely different design approaches, and not be minor variations between schemes.
1. GENERAL
 A. These numbering conventions have been developed and should be followed throughout
 UGA controlled facilities for the purpose of standardizing room numbers.
 B. For new buildings, these standards should be followed as closely as possible. In cases of
 renovations or additions to existing buildings, the building's existing numbering system
 can be extended, or abandoned in order to use the following standards to renumber the
 entire building including the renovated and/or added space. If the existing numbering
 system is used, existing room numbers shall not be duplicated.
 C. The intention is for each facility’s floor and room numbering scheme to be structured so
 that the numbers flow through the building in a consistent, comprehensible, and user-
 friendly pattern. The scheme should be clear to the users of the facility, not causing
 confusion for individuals attempting to locate spaces.

2. FLOOR NUMBERING
 A. The first character of a room number indicates the floor level of the building. The level
 with a “1” as the first character should be the uppermost floor entered at grade or one
 half flight above grade. Levels below this can use the character “0” (zero), “B”
 (basement), or “G” (ground), depending upon the arrangement and number of these
 floors. Buildings located on steeply sloping sites may need to vary from this rule; where
 necessary, the floor numbered “1” may not in fact be the uppermost floor entered at
 grade. Where “B” and “0” (zero) are used in the same building, the “B” level will be
 below the “0” level. The only cases where the floor indicator should be more than one
 character are buildings with more than nine floors.
 B. Large mezzanines shall be numbered as a whole floor. Example: When a mezzanine
 exists between the first floor and the next whole floor, it will be numbered as the second
 floor.
 C. Usable attic floors and penthouse levels should be numbered as if they are whole floors.
 For example, a two-story penthouse atop a three floor building will be numbered as the
 fourth and fifth floors. Do not use prefixes such as “R” for roof level.

3. ROOM NUMBERING
 A. The guidelines in this section should be followed as closely as possible when assigning
 numbers to individual rooms.
 B. Use 3 or 4 digit numbers (plus optional alpha suffix) consistently throughout the
 building. Rooms shall be numbered with a three or four digit number, where the first
 digit may be optionally replaced with the letter “B” or “G” (see floor numbering above);
 the length depends upon the size of the building and once chosen shall be consistent
 throughout the entire building. With an optional letter suffix, the maximum length of a
 room number is 5 characters.
 C. Three digit numbers shall be used for buildings with 9 or fewer floors and 99* or fewer
 rooms per floor. The first floor will be numbered 100’s; second floor will be 200’s; third
 floor will be 300’s etc.
 D. Ground floor or basement rooms could be numbered 001, 002, etc. or G01, G02, etc. or
 B01, B02, etc. Note: the following examples use spaces in the room number to clarify and
 illustrate the numbering scheme; these spaces should not appear in the actual room
 number.
Example: Building with 9 or fewer floors and 99* or fewer rooms per floor

G 41 ← indicates room number
↑ indicates floor (ground floor)

3 02 ← indicates room number
↑ indicates floor (third floor)

E. **Four digit numbers shall be used for buildings exceeding 9 floors or having more than 99* rooms per floor. Buildings with wings or sections can also use four digit numbers if this makes the numbering scheme easier to navigate.**

Example: Building with more than 9 floors and 99* or fewer rooms per floor

B0 02 ← indicates room number
↑ indicates floor (basement floor)

01 02 ← indicates room number
↑ indicates floor (first floor)

11 02 ← indicates room number
↑ indicates floor (eleventh floor)

Example: Building with 9 floors or less but more than 99* rooms per floor

B 102 ← indicates room number
↑ indicates floor (basement floor)

1 102 ← indicates room number
↑ indicates floor (first floor)

Example: Building divided into wings or sections

G 1 02 ← indicates room number
↑↑ indicates wing or section (numeric only)
∟ indicates floor (ground floor)

1 1 02 ← indicates room number
↑↑ indicates wing or section (numeric only)
∟ indicates floor (first floor)

*The actual number of rooms requiring the use of four-digit room numbering will vary, depending upon how many numbers are skipped and also the number of suites vs. rooms requiring non-suffixed numbers.

F. **Numbers should flow from one end of the building to the other**

i. In a building with only one dividing corridor, room numbers should flow in ascending order from one end of the building to the other. In a building with a
more complex corridor system, numbers should flow in ascending order in a clockwise direction through the corridors from the main entrance, or similar location such as elevator lobby.

G. Use odd numbers on one side of a corridor and even numbers on the other side
 i. Room numbers shall be coordinated so that even numbers are on one side of a corridor and odd numbers are on the other side. (In more complex designs, or where the availability of numbers is limited, the odd-even format can be abandoned if consecutive numbering results in a more logical scheme.)

H. Skip numbers to maintain succession of room numbering
 i. In some instances, room numbers on one side of a corridor shall be skipped in order to maintain succession with the room numbers on the opposite side of the corridor. This may occur, for example, when a suite of rooms or large space is accessed through a single door and there are no other doors on that same side until further down the corridor. This will allow for future renovations that may convert suites or large spaces into separate or small rooms with a corridor door.

I. Skip numbers to allow for future renovations
 i. When a corridor contains large rooms such as classrooms, meeting rooms, etc. on both sides of the corridor, room numbers shall be skipped to allow for future renovation of a large space into smaller spaces. Sufficient numbers shall be reserved to allow for the large spaces to be divided into standard size office spaces.

J. Use similar numbering on each floor
 i. Numbering systems on all floors should be similar as much as possible, even when the floor plans are significantly different. To the greatest extent possible, and without creating other inconsistencies, rooms with the same digits in the last positions should be located in the same position in the building. Thus, B01, G01, 001, 101, 201, etc., occur in a vertical stack.

K. Use alphabetic suffixes for rooms entered from other rooms (rather than a hallway)
 i. Rooms entered from a main corridor or lobby are numbered with no letter suffix. When rooms open off of another room and not from a corridor (such as in a suite of offices), use the number of the first room with a letter suffix (example: Reception 301, Office 301A, Office 301B, Office Storage 301C). Assign suffix letters in the order rooms are encountered and, where possible, in the same direction as the overall numbering sequence. Only a single suffix is allowed; thus in the case where the first room already has a suffix, the next alphabetic designation shall be used. Avoid the letters “I” and “O” which may be interpreted as numbers. Large suites with many rooms can use non-suffixed numbers if it makes the numbering scheme more understandable.

L. Each room should have only one number
 i. Each room should have only one number regardless of the number of doors opening into it. Exceptions can be made where a particularly large room is subdivided into different areas of use, such as by cubicles. In these cases, one-character letter suffixes are added to create unique numbers. Where the number of areas exceeds the suffixes available, additional sequential numbers should be used.

M. Number all accessible spaces (Non-assignable spaces)
i. In addition to rooms, all interior spaces that can be directly accessed, such as corridors, vestibules, stairwells, elevator shafts, and accessible pipe spaces shall be numbered. Where doors or walls separate different areas of these spaces, each area shall receive its own unique number. The following room number guidelines shall be used for Non-assignable spaces.

<table>
<thead>
<tr>
<th>Type</th>
<th>Room Number*</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porch/Deck/Ramp</td>
<td>XX94S</td>
<td></td>
</tr>
<tr>
<td>Lobby/Foyer</td>
<td>XX95S</td>
<td>Includes lobby, foyer, vestibule, anteroom</td>
</tr>
<tr>
<td>Dock</td>
<td>XX96S</td>
<td>Includes receiving areas, loading docks</td>
</tr>
<tr>
<td>Elevator</td>
<td>XX97S</td>
<td></td>
</tr>
<tr>
<td>Stair</td>
<td>XX98S</td>
<td></td>
</tr>
<tr>
<td>Hall/Corridor</td>
<td>XX99S</td>
<td>Includes halls, corridors</td>
</tr>
</tbody>
</table>

* XX is the floor number (01, 02, 03, etc.) and S is an alphabetic suffix, i.e., A, B, C, etc.

General notes for Non-assingnable spaces:

All room numbers shall have an alphabetic suffix. Begin the numbering with the suffix rather than beginning with blank, i.e., 0198A, 0198B, etc.; NOT 0198, 0198A.

When a building has stairs, label stairs as separate space labels rather than merging with hall/corridor space labels.

No distinction between public and private corridors other than private corridors should typically have a “real” space label rather than be labeled using the circulation scheme.

N. DO NOT:

i. Do not use two-character floor level indicators for buildings with 9 or fewer floors.

ii. Do not number mezzanines as “M” floor level.

iii. Do not number penthouses as “R” for roof level.

iv. Do not use more than five or less than three characters for a room number.

v. Do not use a letter prefix or suffix to indicate a room type (such as M101 or 101M for a first floor mechanical room).

vi. Do not use letters except as a floor prefix, or suffix for a room accessed through another room (do not number a data room as 1D00).

vii. Do not use periods, hyphens, spaces, or any other non-alphanumeric character in room numbers (do not number a room as 1-16 or 01.14.03).

viii. Do not number internal courtyards and roof areas, unless covered. Exception: The uncovered top level of parking decks used for parking should be assigned numbers.

ix. Do not number rooms on one side of a hallway and then back down the other side.

O. DO:

i. Do number all accessible spaces, including stairwells and elevator shafts.

ii. Do number all exterior covered spaces, whether walled or not.
iii. Do number all penthouse spaces.

4. **STANDARDS FOR PARKING DECKS**

 A. Standalone parking decks are considered buildings and will have a building number and room numbers to cover all usable space within the structure. This also includes the top uncovered level.

5. **CONFLICTS AND SPECIAL CASES**

 A. In the case of conflicts or questions, contact the project manager who will coordinate with FMD.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>01</td>
</tr>
<tr>
<td>1.0 – Purpose, Use and Requirements</td>
<td>02</td>
</tr>
<tr>
<td>2.0 – Definitions and Terms</td>
<td>03</td>
</tr>
<tr>
<td>3.0 – Process</td>
<td>06</td>
</tr>
<tr>
<td>3.1 – Accuracy and Proficiency</td>
<td>06</td>
</tr>
<tr>
<td>3.2 – Level of Development (LOD)</td>
<td>07</td>
</tr>
<tr>
<td>3.3 – BIM Execution Planning</td>
<td>07</td>
</tr>
<tr>
<td>3.4 – Integrated Project Delivery (IPD) Methodology Plan</td>
<td>08</td>
</tr>
<tr>
<td>4.0 – Objectives, Application & Deliverables</td>
<td>10</td>
</tr>
<tr>
<td>4.1 – Phase 1: Pre-Design/Conceptualization</td>
<td>10</td>
</tr>
<tr>
<td>4.2 – Phase 2: Schematic Design</td>
<td>11</td>
</tr>
<tr>
<td>4.3 – Phase 3: Preliminary Design (Design Development)</td>
<td>12</td>
</tr>
<tr>
<td>4.4 – Phase 4: Construction Documents</td>
<td>15</td>
</tr>
<tr>
<td>4.5 – Phase 5: Bidding/Procurement Phase</td>
<td>17</td>
</tr>
<tr>
<td>4.6 – Phase 6: Construction Phase</td>
<td>17</td>
</tr>
<tr>
<td>4.7 – Phase 7: Project Closeout</td>
<td>18</td>
</tr>
<tr>
<td>5.0 – Model Ownership & Instruments of Service</td>
<td>19</td>
</tr>
<tr>
<td>5.1 – Model Ownership</td>
<td>19</td>
</tr>
<tr>
<td>5.2 – Instruments of Service</td>
<td>19</td>
</tr>
<tr>
<td>6.0 – Component Worksheet</td>
<td>20</td>
</tr>
</tbody>
</table>

For the BIM Execution Plan (BEP) refer to Section: 01 07 00.01
1.0 - PURPOSE, USE AND REQUIREMENTS

The purpose of this BIM Standard is to establish baseline requirements for Design Professionals and Contractors in their Building Information Modeling (BIM) efforts related to the design and construction of University of Georgia (UGA) facility Projects.

Where BIM is required as a deliverable, the BIM Team (Design Professional and Contractor on a specific Project collaborating on BIM requirements) shall refer to and comply with the requirements of the BIM Standards. BIM is required on all Projects with total funding of $5 million or greater. On all other projects BIM is encouraged but not required.

The use and application of BIM when required will apply to all phases of the project’s lifecycle, including master planning, program analysis, project definition and schematic design, design and construction phases, and facility management. BIM is an evolving tool and the BIM Team, through the BIM Execution Plan (BEP; refer to section 01 07 00.01 of the Standards) development process, is encouraged to bring forth ideas and suggestions to make the process as efficient and beneficial as possible. As each Project is unique, the BIM Execution Plan will be specific and customized to each Project.

The BIM deliverable does not replace the standard project deliverables as defined in the Design Professional’s and Contractor’s Contracts; BIM is considered an additional deliverable. UGA requires that all design and construction document deliverables for Projects are created and derived from the building information models, and expects that information in the model be coordinated, resolved and updated with the 2D Contract Document deliverables.

It is UGA’s intent to reuse the BIM models and associated data for continuing lifecycle management of the buildings, including facilities management and future development/redevelopment of those future existing buildings. It is the goal and intention that UGA shall receive deliverables to meet the needs of two separate departments. One objective being the OUA, requiring an accurate as-built BIM model with final component data to be used for future building renovations, additions and future building planning and management; the other objective being a BIM model and Construction Operations Building Information Exchange (COBie) deliverable for the FMD to capture facility and operations data that will be integrated with Computer Aided Facilities Management (CAFM) software. BIM models shall be provided throughout the design, construction and closeout phases along with corresponding data collection from the BIM models, to be submitted in COBie format to capture and record final close out data.

It is not the intent of UGA to require additional, unnecessary, or duplicative modeling efforts, and UGA recognizes that different models may be generated or not depending on each BIM Team entities abilities or normal work processes. For example, many fabricators (ductwork, fire sprinkler piping, etc.) use software that can be developed and read in Navisworks. However, the Navisworks information cannot be brought into the Design Professional’s Revit model. UGA ideally desires a complete as-built Revit model, but does not require and does not want to pay for duplicative work to take the systems modeled in Navisworks and to remodel them in Revit.

The Navisworks software will allow the Revit model to be imported into the Navisworks model resulting in a complete as-built viewable model. UGA can use Navisworks viewing software to look at the entire model to locate information embedded in the model. In this scenario, UGA will receive as final
deliverables both Revit model (missing items that were only modeled in Navisworks) and a Navisworks model (with Revit model imported into it). If a BIM Team is able to originally model all the required items in Revit without duplicating efforts, then for example, one less type of model is required as a deliverable.

UGA cannot use the Navisworks model to model future projects after the completion of the current Project and will have specific features remodeled in Revit in the future if deemed appropriate for that future Project. It is hoped that the software translation issues will be resolved soon and the issue of multiple types of models due to software incompatibilities will disappear.

Accepted software is listed below, however, other software shall be considered subject to their capabilities and benefits to the Project. Direct any questions regarding the BIM Standards to the Office of University Architects (OUA):

2. Authoring Software for MEP, FP, Specialty Consultants: Revit MEP, ArchiCAD MEP, AutoCAD MEP, AutoCAD Architecture. MEP shall use BIM Authoring Software, but may use 3D object-oriented software.
3. Civil Design: AutoDesk Civil 3D, Bentley Inroads
4. Coordination and Spatial Conflict Checking: Navisworks, BIMSight, Solibri Model Checker
5. Model Checking Utilities (Spatial validation and Industry Foundation Class) Solibri, BIMSight, Navisworks

2.0 – DEFINITIONS AND TERMS

These terms and definitions are specified for BIM Standards. Other general Definitions and Abbreviations can be found in Section II – Design Process in the UGA Design & Construction Standards.

Accuracy
The level of detail and the level of precision expected at various points in the project process are dependent on the required level of design (LOD). Accuracy refers to the placement, sizing, and representation of building components. The scale represents a mixture of 3D and 2D content at the one end to a fully 3D model at the other end that will be used in Interference Checking and As-built/Record drawings.

As-Built Model
A digital representation of a facility produced through BIM during the construction phase of a project that contains data and other relevant information from the design model and tracks changes during construction. These are Construction Models that have been updated throughout the construction process and reflect the final as-built condition of the project and includes relevant component data that will be needed for COBie data output. Typically a model provided by the Contractor that is a concurrent model to the Design Intent/Record Model provided by the design professional.
Building Information Model (BIM)
An acronym for “Building Information Modeling”, or “Building Information Model” that is a
digital representation of the physical and functional characteristics of a facility and a shared
resource that forms a basis for decisions during its life-cycle, from conception to demolition.

BIM Deliverables
Information (in numerous formats) that may be required by Contract or agreement to be
submitted or passed to another party and to UGA.

BIM Execution Plan (BEP)
An outline that defines the scope of BIM implementation, identifies the process flow for BIM
tasks, defines information exchanges, and the infrastructure needed for support. A plan created
from the UGA’s BIM Execution Plan template that is to be submitted within thirty (30) days after
Contract award. Refer to Section 01 07 00.01.

BIM Process
A generic name for the practice of performing BIM. This process can be planned or unplanned.
The BIM process may also be referred to as the BIM execution process or the BIM project
execution process. The BIM project execution planning process suggests diagramming the BIM
process using process maps.

BIM Process Maps
A diagram of how BIM will be applied on a project. The BIM project execution plan proposes two
levels of process maps: BIM overview map and detailed BIM use process maps.

BIM Team
All Design Professionals, Contractors, and Consultants charged with delivering BIM information
as defined in the BIM Standards, and listed in the BEP for a specific Project.

BIM Use
A method of applying building information modeling during a facility’s life-cycle to achieve one
or more specific objectives.

Computer-Aided Facility Management (CAFM)
UGA’s FMD utilizes a CAFM software program to assist with maintenance of facilities.

Construction Model
A digital representation of a facility produced through BIM during the construction phase of a
project that contains data and other relevant information from the design model and tracks
changes during construction. Typically this BIM Model is provided by the Contractor and may be
used for quantity take offs, construction sequencing and phasing, clash detection, modeling of
delegated design elements, and data tracking of submittal information.

COBie - Construction Operations Building Information Exchange
COBie is a standard of information exchange that allows information to be captured during
design and construction in a format that can be used during the operations of a building once
completed. Final COBie format deliverable will be in (.XLSX) spreadsheet form.

Critical Path Modeling
Critical Path Modeling is a method of demonstrating Integrated Project Delivery. It sets a plan
within the BIM Team that accounts for the activities of each discipline and how they interact
with each other. It builds upon a critical path method for those activities, and allows the project
team to schedule a complete project.

Design Intent Model
A digital representation of a facility produced through BIM to provide design intent for use in
construction that is coordinated with other engineering disciplines. This type of BIM model is
typical provided by the Design Professional team and will be used to produce a combination of 3D and 2D information that is then utilized to produce the contract drawings for construction.

.DWG
.DWG is a native AutoCAD file format. It is a widely used file format for exchanging drawing information and 3D information to different programs. While not a database file type, it still has lots of uses for exchanging information.

.GBxml
A .GBxml file is a Green Building file type. It is used to run simulations through energy modeling software. It is a widely accepted file format for those types of software.

Interior Design
Interior Design is defined as the selection of interior materials, finishes, and furnishings.

Integrated Project Delivery (IPD)
Integrated Project Delivery is a collaborative effort by design professionals to maximize performance and efficiency in all phases of a project.

Level of Development (LOD)
Describes the completeness to which model elements representing components, systems, or assemblies are developed at progressive project phases. This development includes geometric and non-geometric data.

Navisworks
Navisworks is software that allows for the viewing of multiple model formats. This ability to “view” these files also allows for Navisworks to simulate the interaction between model files. That includes collision reporting, time lining, and coordination.

.NWC
An .NWC file is a Navisworks Cache File that is used by Navisworks to quickly read many other file types. All linked files in Navisworks have an .NWC file created automatically. In addition, Revit will export directly to the very small file type of .NWC for quick access by Navisworks.

.NWD
A much larger file than the .NWC, the .NWD file shows a snapshot in time of Navisworks file. No linked files exist but all geometry is included.

Phases
The phases of a project can be described in two different ways as the adoption of IPD terminology starts to penetrate the BIM Execution Plan and the IPD Methodology Plan. Below is a list of the traditional names followed by the IPD name:

Pre-Design/Conceptualization Phase
Schematic Design/ Criteria Design Phase
Design Development/ Preliminary Design/ Detailed Design Phase
Construction Documents/Implementation Phase
Agency Permit & Bidding/Agency Coordination & Final Buyout
Construction/Construction
Occupancy

Record Model
Design Intent Models that have been updated throughout the construction process. These changes and updates have been communicated from the Contractor to the Design Professional through the comments, annotations, and mark-ups from the As-Built Documents. These typically, but not always, are discipline specific models.

Record Drawing
The required views from a Record Model in 2D format that documents the published contract drawings for construction, updated at the end of the project construction phase to reflect changes due to Construction Change Orders and document As-Built conditions.

.RVT
An .RVT file is a native REVIT file type. It is also the deliverable file format for all projects. This includes all of the design professional team’s models.

Simple Building Information Modeling (SBIM)
SBIM is a concept of producing a “light” model that can be used for simulating the building’s performance very early within the design process. SBIM is the process of modeling only the exterior envelope, and the interior volumes to produce a lean model that energy modeling software can use easily.

3.0 - PROCESS
In addition to previously stated requirements, Design Professionals and their consultants may use their own in-house standards, components and details that embed the best practices of the firm. BIM shall be created by the BIM Team that includes all geometry, physical characteristics, and component data needed to describe the design intent and Construction Documentation. All drawings and schedules required for assessment, review, bidding, and construction shall be derived from the BIM models either directly (as in schedules, floor plans, elevations, sections, project specific details, etc.) or indirectly (as may be the case with standard details). The process is to include requirements for accuracy and proficiency, Level of Development, BIM Execution Planning, Integrated Project Delivery, interference checking, COBie data management, and other requirements as defined in this section.

3.1 - ACCURACY AND PROFICIENCY
BIM models shall provide accurate and correct final information about the building project and it’s components. Use industry standard and accepted nomenclature or UGA nomenclature (when provided or required) for objects and spaces. Use model checking tools before submission. Objects in BIM should be created and categorized appropriately within the BIM model. System families such as walls, floors, roofs, sweeps, etc. shall be properly created and categorized as what they are. Component families such as furniture, casework, specialty equipment, plumbing equipment, mechanical equipment, etc., shall also be properly created and categorized as to what they are so that component elements can be properly scheduled, quantified, and controlled within the model and have appropriate data associated with those components for latter data capture in the COBie deliverable. Use of generic component models, in-place families and/or groups should be minimized or avoided as much as possible. Modeling of the building and it’s components should be modeled precisely and accurately as much as possible, yet no less accurate than industry standard construction tolerances for the components being modeled. For objects that are not easily accommodated within the program due to special circumstances, such as complexity or uniqueness, then modeling an approximation of it that conforms closely to its size and look is acceptable along with categorizing it accordingly. All such occurrences should be documented and communicated to the Project Manager in writing. Accuracy and proficiency shall be expected with both 3D and 2D content.
3.2 - LEVEL OF DEVELOPMENT (LOD)

Level of Development (LOD) management should be utilized to assign the expected level of development for the project at the various project phases, along with what team parties are responsible for the specific LOD for each of the components defined in the BEP, at the various project phases.

The following are general LOD descriptions:

1. LOD 100: Conceptual Design - Overall building massing
2. LOD 200: Schematic Design and Preliminary Design - Generalized systems and assemblies with approximate quantities, sizes, shapes, location and orientation for analysis of required systems, including daylight, views and energy.
3. LOD 300: Construction Documents - Detailed systems and elements. Modeling and detailing sufficient enough to meet requirements of contract documents for permitting and construction.
4. LOD 400: Shop Drawings for Fabrication and Assembly
5. LOD 500: As-Built & Record Models & Drawings for Maintenance and Operations - Includes UGA required elements for final model.

3.3 – BIM EXECUTION PLANNING

UGA requires a BIM Execution Plan (BEP) that is customized for the specific needs and requirements of each project. Utilize the UGA BEP Template as a starting point for developing each project’s BEP. The BEP shall define the uses and responsibilities of BIM on the project and its detailed process throughout the lifecycle of the project. Once the plan is approved, the team is required to follow it, monitor their progress against the plan, and make adjustments to the plan as appropriate. The BIM Execution Plan shall be considered a living document that will continue to change and evolve over the course of the project.

The steps include the following:

1. Within 30 days of Design Professional contract award:
 A. BIM Execution Plan Overview
 B. Project Information
 C. Key Project Contacts
 D. Project Goals/BIM Uses
 i. Data Commissioning
 ii. Performance Monitoring
 E. Organizational Roles/Staffing per phase
 F. BIM Process Design
 G. BIM Information Exchanges
 H. BIM and Facility Data Requirements
 I. Collaboration Procedures
 J. Quality Control Reviews
 K. Technological Infrastructure Needs
 L. Model Structure
 M. Project Deliverables Per Phase
 N. Delivery Strategy/Contract

2. Template: Utilize the UGA BIM Template as the starting point for project specific BEP.
When developing the BEP project goals for the BIM model and BIM data, the desired end results should be identified. How will the model be used during the project and after the project is completed? What data will need to be captured and delivered in COBie spreadsheet format? How will that data be used by the Owner? How will these objectives start to define how the model and its data are created and defined?

3.4 – INTEGRATED PROJECT DELIVERY (IPD) METHODOLOGY PLAN

The BIM Team’s IPD Methodology Plan should be integrated into the BEP and be subject to the same submittal and review time table as the BEP. The IPD Plan must include a high level of integrated design, identification of project team members and how they will interact with each other during the project, and a critical path method using modeling and model information validation.

While it is understood that most projects will not be a full IPD project in the strictest sense of the word due to current contract structure, there are however many aspects of IPD methodology that can and should be integrated with BIM. Most notably, the IPD aspects of the planning for and sharing of model information with and between the design professional and constituents but also with the Contractors and sub-contractors should be incorporated. A plan for collaboration between the Design Professional and Contractor (and subcontractor) should be outlined in such a way as to provide for this collaboration to start occurring as soon as feasibly possible within the design and construction phase process.

An important aspect of this IPD Methodology Plan is the outlining of how data will be developed and progressed throughout the project. Outlining and assigning who is responsible for the data and model development at each phase and at what point the data will be handed off to a different party. This will be especially important with regards to how COBie data will be developed and coordinated, this is because multiple parties will be responsible for different data entry at different phases, and all data will have to be integrated at the end into a unified single deliverable for submittal to UGA.

A detailed description and mapping of what data will be needed as part of the final delivery is an important part of the BEP & IPD methodology. For example; data fields will need to be defined for uploading into the Owner’s CAFM program. Required data fields that are available in the BIM model will have to be identified and data that will have to come from other sources will have to be identified. These required data fields will then need to be mapped to their corresponding COBie data fields. It will be necessary to show how required data that can be captured from the BIM model will get from the BIM model(s) to the COBie spreadsheets and finally uploaded into the Owner’s FM database program. In addition, data that was entered into the COBie spreadsheets separately from the model and that need to be re integrated back into the BIM model(s) will need to be identified. If there are multiple models then the data from each model will have to be identified and managed so that data from multiple models can be consolidated together into the required COBie worksheets. This will require a great deal of project team integrated delivery coordination and planning.

The BEP and IPD methodology cannot be delivered in isolation. No one party within the BIM Team can adequately outline the execution plan, while also obtaining the necessary team member commitments for successful BIM implementation. Full coordination and collaboration by all parties is an absolute necessity. The following aspects of an integrated work plan shall be addressed:
1. Setup of initial BIM Schedules and project parameters within the BIM model to establish and organize the capture of spatial and component data information for future distribution and export.

2. Use Omniclass Table 13 for spatial naming conventions and Omniclass numbers for all spatial data. Where multiple naming options are available determine which Omniclass names will be utilized.

3. Use Omniclass Table 23 for component and product naming conventions and Omniclass numbers for all building components requiring COBie information. Determine which components and products will be tracked and data collected.

4. Determine the specific data required for each space or component and the assignment of spatial, system, component and other data responsibilities and authorship.
 A. Spatial data
 B. FF&E components
 C. Structural components
 D. Special Equipment components
 E. Mechanical Equipment components
 F. Electrical Equipment components
 G. Plumbing Equipment & Accessories
 H. Design phase versus Construction phase data
 I. Commissioning Data
 J. Close-out Data
 K. As-Built / Record model and associated data

5. Coordinate the authorship and responsibility at each phase and establish procedures and schedules for when component data responsibility will transfer to another BIM Team entity. (i.e. Mechanical components – initial BIM schedules and project parameters for future data entry established by Architect, then actual modeled components to be originally authored by Mechanical Engineer, transferred to Contractor for submittal phase development by subcontractor, utilized in clash detection, and final data entry of submitted component data such as make, model, and serial numbers. Then any required data by commissioning agent, and final delivery of all final as-built modeling and component data into final deliverable formats to the Owner, including BIM Model and COBie spreadsheets.)

6. Recognize and identify separate deliverable requirements for both OUA and for FMD, and provide plan for meeting separate needs of each Owner entity requirements.
 A. OUA will require an As-Built Model sufficiently developed and modeled for use in planning and design of future project additions and alterations to the current Project. Due to incompatibilities of software and the desire not to duplicate modeling efforts, OUA will accept multiple As-Built Models if necessary to document all of the required information. For example, a Revit model (that is missing as-built ductwork) and a Navisworks model (that has the Revit model imported and includes the ductwork) may be accepted in lieu of one Revit model.
 B. In addition to OUA requirements, FMD will also require As-Built Data in COBie format suitable for integration into their CAFM software.

7. Identify data that may need to be reintegrated into a combined final As-Built model, if data was not generated from that model.

The workflow and progress of this information gathering, collecting and submitting may vary depending on size and type of project, data desired, abilities of the various parties involved, and contractual
relationship of the various parties. It is estimated that a minimum of three to four meetings will be needed to develop the overall strategy, and all key decision makers will need to be involved, including (but not limited to) the Design Professional, Owners representatives, Structural & MEP Engineers, Contractor, major Sub Contractors, and Commissioning Agent as early in the process as feasibly possible. It may become necessary to revise and update the BEP as additional parties and stakeholders come on board. The BEP shall be revised, updated and resubmitted at each major project phase.

4.0 – OBJECTIVES, APPLICATION & DELIVERABLES

The following items are specific BIM deliverables and/or coordination items required at the completion of each phase. These are in addition to the traditional deliverables required by Contract or other deliverables required in the UGA Design and Construction Standards.

4.1 – PRE-DESIGN/CONCEPTUALIZATION

1. **Project Objectives and BEP**: Provide a written summary description of project objectives as part of the initial BIM Execution Plan (BEP) for review and approval.

2. **Programming and Planning Tools**: The design professional is encouraged to use electronic programming and planning tools that integrate into their BIM software to capture early cost, schedule and program information. Deliverables at the end of Pre-Design shall verify and confirm the program, budget, schedule and targeted building efficiency. The design professional shall use BIM & Planning software for use in supporting comparative costs analysis of various design options.

3. **Existing Building Conditions**: The Design Professional shall model existing conditions needed to coordinate the extent of the new construction work where work includes additions or alterations. Contact Project Manager for drawing inventory of existing buildings for use as a base reference only. Refer to section 01 31 00.01 – Access to Existing Documents. Unless otherwise specified, the Design Professional is responsible for verification of existing conditions and ensuring that all electronic deliverables are accurate and comply with requirements.

4. **Simplified BIM (SBIM) Model**: The design professional shall develop a simplified BIM model formatted for use in conceptual energy modeling for comparative analysis and other early Pre-Design Conceptualization efforts, this may be in the form of a simplified mass model or other LOD: Level One type of model as appropriate for the early analysis requirements listed in this phase. At least three design options shall be developed and presented; including site information.

5. **Site & Topographical Surveys**: Topographical surveys shall be received from Project Manager in electronic format in a format that allows for importing into the BIM Team’s BIM software. Exact requirements vary by Project and shall be coordinated with the Project Manager. Site information shall be included as part of the Pre-Design Conceptualization phase and coordinated with the required three design options. Any site, environmental or historic building aspects or constraints should be addressed in the Pre-Design Conceptualization models as required.

6. **Energy Modeling Requirements**: The purpose at this early phase, is to narrow down design strategies to meet project’s energy goals and targets, including the reduction of energy demand by optimizing building form and orientation and daylight. Comparative energy analysis shall be based on local climate data and actual site conditions for summer and winter. The BIM Team shall utilize the simplified BIM model for use in conceptual energy modeling for comparative analysis, as appropriate for the early analysis software chosen by the BIM Team. At least three
design options that meet the project program and budget shall be compared and results given in “Percent Better” or “Percent Worse”.

7. **Visualization**: The SBIM model shall be utilized to produce 3D & 2D views of each scheme required as appropriate to demonstrate integration of proposed schemes with the surrounding roads, drives, pedestrian paths, access and program requirements. Deliverables shall include rendered views as required to communicate early concept design intent.

4.2 – SCHEMATIC DESIGN

1. **Project Objectives, BEP & Budget**: Provide a written description of project objectives as part of the initial BIM Execution Plan (BEP) for review and approval. Schematic Design defines the optimum design solution to meet UGA’s aesthetic, program, budget and schedule while still being on track for energy, sustainability (if required) and building code requirements. Updated Budget/Cost estimates and updated Schedule shall also be provided at this phase.

2. **Program and Space Validation**: Provide a program and space validation report that utilizes spatial data, which includes room areas derived from the BIM model. Program verification software (for example: Trelligence Affinity) that integrates with the BIM model is encouraged. Areas shall include assignable areas (ASF) and non-assignable areas. Mechanical, electrical, telecommunications, housekeeping, toilet facilities, corridors and other circulation areas shall be labeled and their areas tabulated. Figures for net floor area and gross area shall be tabulated for compliance with Building Efficiency Target. Gross areas include wall thicknesses and open voids, per floor. In addition provide initial spatial data in COBie format (see COBie Data item below).

3. **Existing Building Conditions & Existing Utilities Report**: The Design Professional shall continue to model existing conditions needed to coordinate the extent of the new construction work where work includes additions or alterations. Unless otherwise specified, the Design Professional is responsible for verification of existing conditions and ensuring that all electronic deliverables are accurate and comply with requirements. At this phase an existing utilities report should also be provided for impact on schematic design solution.

4. **BIM Model**: All information required for Schematic Design level of development shall be graphically and alphanumerically correct, included in, and derived from the BIM model. Including, room and building areas and names. Model shall meet UGA’s functional and aesthetic requirements while still meeting budgetary and sustainable demands. BIM model to be sole source of all 2D drawings, being derived from the model. Generic and “place holder” system and component families may be utilized for this model deliverable. The model shall contain a high level of accuracy and proficiency as the design develops. Provide work set organization and coordinate work set management as part of BEP.

5. **Site & Topographical Surveys**: The site BIM model shall be geo-referenced to the correct coordinate system. Establish protocols and procedures for sharing and coordinating BIM Model origin points so that all consultant models may be correctly loaded into one another’s models for reference, coordination and documentation purposes. Document the procedures for coordination in the BEP. Surveys shall be projected in State plane coordinates Georgia West using the horizontal North American Datum 1983 and the vertical North American Vertical Geodetic Datum 1988 both in units of feet. Design Professional shall coordinate with Project Manager on contour interval and requirements for surveys. See 02 21 00 – Surveys for specific requirements. It is understood that not all BIM programs are compatible with State map coordinate references, if so establish a common origin point between BIM models and Survey / Site information and document in the BEP.
6. **Energy Modeling Requirements**: BIM Team shall continue development of energy model on the selected scheme for Schematic Design to optimize focus on the most promising energy saving strategies. Document how the model will progress at each phase and which BIM Team member is responsible for the energy model at each phase. (For example, the early phase energy analysis might be performed by the architect utilizing a basic level program such as Revit in conjunction with Green Building Studio, then progress to an Energy consultant who might utilize a more advanced program such as Ecotect or IES-VEware, and then finally progress to the mechanical engineer who will do final energy modeling using a program like eQuest.) Document a plan for how the energy model will develop in each phase of the project, identifying responsible parties, software, and integration with the BIM model in the BEP. Information shall include life cycle cost (LCC) and return on investment (ROI).

7. **Visualization**: The BIM model shall be utilized to produce 3D & 2D views of each scheme required as appropriate to demonstrate development of the selected scheme for Schematic Design. Deliverables shall include any rendered views as required to communicate Schematic Design intent.

8. **Collision Report**: At this phase additional models and information may not yet be developed enough for true interference or clash detection. Provide plan for future phase interference and/or clash detection in the BEP.

9. **COBie Data**: At Schematic Design Phase initial COBie data shall be limited to Facility, Floor and Space information only. COBie Data shall be submitted in spreadsheet format, using the most current version of COBie. The following COBie worksheets shall be provided in the Schematic Design deliverable:

 A. **COBie Table 6-20 Worksheet 01**: Contact (People/Offices/Companies)
 This worksheet may be generated in the spreadsheet outside of the BIM program

 B. **COBie Table 6-21 Worksheet 02**: Facility (Identification of facility (ies))
 This worksheet may be generated in the spreadsheet outside of the BIM program

 C. **COBie Table 6-22 Worksheet 03**: Floor (description of vertical levels)
 This worksheet may be generated in the spreadsheet outside of or derived from the BIM model

 D. **COBie Table 6-23 Worksheet 04**: Space (Spaces within a floor)
 This worksheet shall be derived from the BIM model utilizing scheduled rooms from the BIM model, including assignable and non-assignable areas; mechanical, electrical, telecommunications, housekeeping, toilet facilities, corridors and other circulation areas.

Coordinate actual data needed in each worksheet with OUA and FMD requirements. Document required data necessary in COBie worksheets and document the components which need to have data generated and captured in the BEP. It is not necessary to provide data on all model components only those required. Schedule planning meetings to determine the scope and extents of elements and components that will need to be captured in COBie worksheets, and provide a mapping scheme for migrating data fields in the BIM model to the data fields in the COBie spreadsheets as part of the BEP.

4.3 – **PRELIMINARY DESIGN (DESIGN DEVELOPMENT)**

1. **Project Objectives, BEP & Budget**: The BIM Team shall provide a written description of project objectives as part of the initial BIM Execution Plan (BEP) for review and approval. Preliminary Design will show the refinement of the scope of work identified during the Schematic Design
Phase. It will also have reconciled the impact of the engineering disciplines on the Schematic Design, and have major structural and MEP systems modeled at this time to demonstrate the integration of the original schematic design concepts with the engineering requirements. Updated Budget/Cost estimates and updated Schedule shall also be provided at this phase. BEP should document the various design models from the BIM Team entities. Use BIM software to extract more accurate figures for cost estimating. Outputs shall be on spreadsheets and submitted at the end of this phase.

2. **Program and Space Validation**: Provide an updated program and space validation report that utilizes spatial data which includes room areas derived from the BIM model. Verify building efficiency targets. In addition provide spatial data in COBie format (see COBie Data item below)

3. **Existing Building Conditions & Existing Utilities Report**: The Design Professional shall continue to model existing conditions needed to coordinate the extent of the new construction work where work includes additions or alterations. Unless otherwise specified, the Design Professional is responsible for verification of existing conditions and ensuring that all electronic deliverables are accurate and comply with requirements. At this phase existing utilities should be identified, documented and coordinated with base MEP systems and show how new MEP systems will tie into the existing utilities.

4. **BIM Model**: All information required for Preliminary Design level of development shall be graphically and alphanumerically correct, included in, and derived from the BIM model. Including, room and building areas and names. Model shall meet UGA’s functional and aesthetic requirements while still meeting budgetary and sustainable, if this is required, demands. BIM model to be sole source of all 2D drawings, being derived from the model. Generic and “place holder” system and component families should be replaced with proposed system and component families. A model to contain a high level of accuracy and proficiency as the design develops. Provide additional scope of work coordination regarding how final building elements are going to be modeled between BIM Team entities and documented in the BEP. For example certain structural elements such as floor slabs can be the responsibility of the Architect or Structural Engineer. In some cases the elements may be duplicated, copy/monitor may be utilized, if so, how and for which elements, document in BEP. Additional modeling Requirements:

 A. **Architectural Systems Requirement**: Architectural Site Plan, existing building elements or conditions, demolished items, new interior and exterior walls (not generic types), ceilings, soffits, sun control elements, floors and roof systems, penthouses and roof structures, fenestration and doors, vertical circulation, built in millwork and architecturally significant equipment, furnishings and fixtures, plumbing fixtures.

 B. **Structural Engineering Requirements**: Foundations, framing, shear and load bearing walls, brick ledges, steel bracing, edge of slab conditions, lintels.

 C. **HVAC Systems Requirements**: Equipment such as fans, VAV’s, compressors, chillers, cooling towers, air handlers, etc.; Distribution ductwork modeled to outside ductwork or duct insulation; Diffusers, louvers, hoods, radiant panels, perimeter units, wall units; Show clearances required for equipment access, removal or repair as invisible solids.

 D. **Electrical Systems Requirements**: Transformers, generators, main distribution panels, switchgear, main IDF’s, conduit and feeders larger than ¾” diameter, outlets, switches, junction boxes, lighting fixtures and controls, fire alarm permanently mounted fixtures, building controls and clearance zones for access.

 E. **Plumbing, Process Piping & Fire Protection Requirements**: Waste/Vent, Supply or Process Piping at or over ¾” (includes any insulation); plumbing fixtures; sprinkler lines
larger than ¾” diameter, sprinkler heads, pumps, stand pipes, wall hydrants, connections and risers.

F. **Specialty Consultants Requirements**: Equipment provided or specified by consultant with rough –in connection points for all utilities and clearances required. Extent of modeling shall be per the BIM Execution Plan.

5. **Site & Topographical Surveys**: The model shall include topography with level of detail per the BIM Execution Plan. Model should include surrounding areas that affect drainage system or have other impacts. Landscaping elements shall include planted areas, beds and berms, hardscape, site paving and storm water management structures or systems.

6. **Energy Modeling Requirements**: Continued development of energy model on the selected scheme from Schematic Design to optimize focus on the most promising energy saving strategies is required. Parametric studies to better understand the energy use of each building component are required. Model shall meet any target requirements for sustainability and/or LEED or other third party verification. Model shall include all the design and operating parameters that affect energy consumption after occupancy. Expected occupant numbers and hours, lighting use, equipment use, and other user data shall be included to attain a closer approximation of actual use. Requirements shall include options for Energy Conservation Measures (ECM) to achieve further reductions in water, electricity or energy in the facility. Information shall include life cycle cost (LCC) and return on investment (ROI). Update the plan for how the energy model will be utilized at this and future phases of the project, identifying responsible parties, software, and integration with the BIM model in the BEP.

7. **Collision Report**: At this phase additional models and information shall be developed enough for true interference and/or clash detection. Discipline Collision Reports: Collision report shall include; structure against electrical and specialty equipment; ductwork / piping against electrical equipment; ductwork / piping against floors and the building envelope; ductwork / piping against structural framing elements.

8. **COBie Data**: At Preliminary Design Phase COBie data shall be submitted in spreadsheet format, using the most current version of COBie. The following COBie worksheets shall be provided in the Preliminary Design deliverable:
 A. **COBie Table 6-20 Worksheet 01**: Contact (People/Offices/Companies)
 B. **COBie Table 6-21 Worksheet 02**: Facility (Identification of facility (ies))
 C. **COBie Table 6-22 Worksheet 03**: Floor (description of vertical levels)

 The following worksheets shall be derived from the BIM model utilizing scheduled rooms/elements from the BIM model.
 D. **COBie Table 6-23 Worksheet 04**: Space (Spaces within a floor)
 E. **COBie Table 6-26 Worksheet 07**: Component (named components & equipment)

 Coordinate actual data needed in each worksheet with OUA and FMD requirements. Document required data necessary in COBie worksheets and document the components which need to have data generated and captured in the BEP. It is not necessary to provide data on all model components only those required. Schedule planning meetings to determine the scope and extents of elements and components that will need to be captured in COBie worksheets, and provide a mapping scheme for migrating data fields in the BIM model to the data fields in the COBie spreadsheets as part of the BEP.
4.4 – CONSTRUCTION DOCUMENTS (CONTRACT DOCUMENTS)

1. **Project Objectives, BEP & Budget**: The BIM Team shall provide a written description of project objectives as part of the initial BIM Execution Plan (BEP) for review and approval. Continued development of the model so that the design intent and scope of work is detailed and annotated, graphically clear for accurate bidding, scheduling and construction purposes. Updated Budget/Cost estimates and updated Schedule shall also be provided at this phase. BEP should document the various design models from the BIM Team entities. Use BIM software to extract more accurate figures for cost estimating. Outputs shall be on spreadsheets and submitted at the end of this phase.

2. **Program and Space Validation**: Provide an updated program and space validation report that utilizes spatial data which includes room areas derived from the BIM model, and verifies that final design matches original program intent. Verify building efficiency targets. In addition provide spatial data in COBie format (see COBie Data item below).

3. **Existing Building Conditions & Existing Utilities Report**: The Design Professional shall continue to model existing conditions needed to coordinate the extent of the new construction work where work includes additions or alterations. Unless otherwise specified, the Design Professional is responsible for verification of existing conditions and ensuring that all electronic deliverables are accurate and comply with requirements. At this phase existing utilities shall be identified, documented and coordinated with base MEP systems and show how new MEP systems will tie into the existing utilities.

4. **BIM Model**: All information required for Construction Documents level of development shall be graphically and alphanumerically correct, included in, and derived from the BIM model, including Room and Building Areas and names. Model shall meet UGA’s functional and aesthetic requirements while still meeting budgetary and sustainable, if this is required, demands. The BIM model to be the sole source of all 2D drawings, being derived from the model. Generic and “place holder” system and component families should be replaced with actual representational system and component families that accurately reflect the desired design intent. The model is to contain a high level of accuracy and proficiency as the model is developed. Maintain parametric links within the model so that plans, sections elevations, custom details, schedules and 3D views are automatically generated and referenced. 2D details and section information should be consistent with and accurately match with corresponding 3D information within the scale being referenced. Do not hide 3D geometry that does not match 2D details and then draw a differing condition in 2D, 3D geometry shall accurately reflect design intent of 2D detailing. Provide additional scope of work coordination regarding how final building elements are going to be modeled between BIM Team entities and document in the BEP. Refine load calculations, wind pressure, daylighting, acoustics, natural ventilation, code issues. Extent of modeling shall be per the BIM Execution Plan. Additional modeling Requirements:

 A. **Architectural Systems Requirement**: Architectural Site Plan, existing building elements or conditions, demolished items, new interior and exterior walls (not generic types), ceilings, soffits, sun control elements, floors and roof systems, penthouses and roof structures, fenestration and doors, vertical circulation, built in millwork and architecturally significant equipment, furnishings and fixtures.

 B. **Structural Engineering Requirements**: Foundations, framing, shear and load bearing walls, brick ledges, steel bracing, edge of slab conditions, lintels.

 C. **HVAC Systems Requirements**: Equipment such as fans, VAV’s, compressors, chillers, cooling towers, air handlers, etc.; Distribution ductwork modeled to outside ductwork or
duct insulation; Diffusers, louvers, hoods, radiant panels, perimeter units, wall units; Show clearances required for equipment access, removal or repair as invisible solids.

D. **Electrical Systems Requirements**: Transformers, generators, main distribution panels, switchgear, main IDF’s, conduit and feeders larger than ¾” diameter, outlets, switches, junction boxes, lighting fixtures and controls, fire alarm permanently mounted fixtures, building controls and clearance zones for access.

E. **Plumbing, Process Piping & Fire Protection Requirements**: Waste/Vent, Supply or Process Piping at or over ¾” (includes any insulation); plumbing fixtures; sprinkler lines larger than ¾” diameter, sprinkler heads, pumps, stand pipes, wall hydrants, connections and risers.

F. **Specialty Consultants Requirements**: Equipment provided or specified by consultant with rough –in connection points for all utilities and clearances required. Extent of modeling shall be per the BIM Execution Plan.

5. **Site & Topographical Surveys**: The model shall include topography with level of detail per the BIM Execution Plan. Model should include surrounding areas that affect drainage system or have other impacts. Landscaping elements shall include planted areas, beds and berms, hardscape, site paving and storm water management structures or systems.

6. **Energy Modeling Requirements**: Provide comparison of proposed final design to the minimally code-compliant base-case building. Model shall meet any target requirements for sustainability and/or LEED or other third party verification. Model shall include all the design and operating parameters that affect energy consumption after occupancy. Expected occupant numbers and hours, lighting use, equipment use, and other user data shall be included to attain a closer approximation of actual use. Requirements shall include options for Energy Conservation Measures (ECM) to achieve further reductions in water, electricity or energy in the facility. Information shall include life cycle cost (LCC) and return on investment (ROI).

7. **Collision Report**: Pre-Bid Collision Reports. Collision reports to verify that no major unresolved collisions are occurring in the Design Professional Design Intent models. Discipline Collision Reports: Collision report shall include; structure against electrical and specialty equipment; ductwork / piping against electrical equipment; ductwork / piping against floors and the building envelope; ductwork / piping against structural framing elements.

8. **COBie Data**: At Construction Document Phase COBie data shall be submitted in spreadsheet format, using the most current version of COBie. The following COBie worksheets shall be provided as part of the Construction Document deliverable:

 A. **COBie Table 6-20 Worksheet 01**: Contact (People/Offices/Companies)
 B. **COBie Table 6-21 Worksheet 02**: Facility (Identification of facility (ies))
 C. **COBie Table 6-22 Worksheet 03**: Floor (description of vertical levels)
 D. **COBie Table 6-23 Worksheet 04**: Space (Spaces within a floor)
 E. **COBie Table 6-26 Worksheet 07**: Component (named components & equipment)

Coordinate actual data needed in each worksheet with OUA and FMD requirements. Document required data necessary in COBie worksheets and document the components which need to have data generated and captured in the BEP. It is not necessary to provide data on all model components only those required. Schedule planning meetings to determine the scope and extents of elements and components that will need to be captured in COBie worksheets, and provide a mapping scheme for migrating data fields in the BIM model to the data fields in the COBie spreadsheets as part of the BEP.
4.5 – BIDDING/PROCUREMENT PHASE

1. **General:** Depending on how project is to be delivered, additional BIM requirements for model sharing may or may not be required on a project by project basis. Document any specific BIM deliverables for this phase in the BEP.

4.6 – CONSTRUCTION PHASE

1. **BIM Execution Plan (BEP) Review:** The BIM Team and UGA shall review the BEP and make necessary changes and updates to insure the smooth continual coordination of BIM modeling information and data collection and integration. The BEP shall be updated to include Commissioning into the BIM and COBie process.

2. **Design Intent Model:** The BIM Team shall continuously maintain and update the design intent model(s) with changes from Construction Change Orders and as-built mark-ups provided by the Contractor(s) during construction. Updated models shall be provided in .RVT format per the BEP for frequency and location.

3. **Construction Models:** A BIM construction model(s) shall be developed and maintained by the Contractor in .RVT format. The Contractor shall be provided a copy of the Design Professional’s BIM Models(s), the Contractor shall then utilize that model to develop a concurrent construction model that he will develop for Construction Phase needs. The Construction phase model may be developed and modified as required to inform: materials, quantities, sequencing, phasing, clash detection, etc. as required by the Contractor and his Sub-Contractors. Additional construction models shall also be developed for fabrication, coordination and shop drawings. These additional construction models may be in other formats other than BIM, if they are in other formats other than .RVT then the Contractor shall review and consolidate those models utilizing Navisworks, and providing a coordinated Navisworks model as a deliverable in .NWD format, during the construction phase at a frequency to be documented in the BEP. As-Built modeling and documentation in the Construction .RVT and .NWD models by the Contractor shall be concurrent with updates to the Design Intent model(s) by the design professional team. It is not the intent of UGA to require additional, un-necessary, or duplicative modeling efforts, and UGA recognizes that different models may be generated or not depending on each BIM Team entities abilities or normal work processes. UGA in any event would like a consolidated As-Built Model in Navisworks (.NWD) that will consolidate all differing modeling methods into one reference. Discussion among all BIM Team parties is expected in determining final BIM deliverables, and all final deliverables shall be documented in the BEP and agreed to by all parties.

4. **COBie Data:** At the beginning of the Construction Phase the Contractor shall take over responsibility for the COBie Data for elements and component data. The Design Professional will maintain responsibility for the COBie Data for spatial data (Rooms and Areas) and other general information. The purpose and intent is for the Contractor to provide the additional data that will come from the shop drawing and product submittal process, delegated design elements, and redesigned systems that are the responsibility of the Contractor and Sub-contractors. The following COBie worksheets (1-4) shall be the responsibility of the Design Professional Team and provided as part of the Construction Phase deliverables per the BEP:

 A. **COBie Table 6-20 Worksheet 01:** Contact (People/Offices/Companies)
 B. **COBie Table 6-21 Worksheet 02:** Facility (Identification of facility (ies))
 C. **COBie Table 6-22 Worksheet 03:** Floor (description of vertical levels)
 D. **COBie Table 6-23 Worksheet 04:** Space (Spaces within a floor)
The following COBie worksheets (5-7) shall be derived from the BIM model utilizing scheduled information from the BIM construction model and shall be provided by the Contractor per the BEP.

E. **COBie Table 6-26 Worksheet 07**: Component (named components & equipment)

Coordinate actual data needed in each worksheet with UGA OUA and UGA FMD requirements. Document required data necessary in COBie worksheets and document the components which need to have data generated and captured in the BEP. It is not necessary to provide data on all model components only those required. Schedule planning meetings to determine the scope and extents of elements and components that will need to be captured in COBie worksheets, and provide a mapping scheme for migrating data fields in the BIM model to the data fields in the COBie spreadsheets as part of the BEP.

4.7 – PROJECT CLOSEOUT

1. **Record Model & Drawings**: The BIM Team shall provide the final update to the Design Intent BIM Model(s) thus producing the Record BIM Model. Record model to contain all changes from Construction Change Orders and as-built markups provided by the Contractor throughout the Construction Phase process. Final Record Model shall be provided in .RVT format and .IFC formats. Record drawings will be provided as updated 2D documentation of Contract Drawings in .PDF and .DWG format or as otherwise defined in the Contract and Closeout Spec #.

2. **As-Built Model & Drawings**: The Contractor shall provide the final update to the Construction BIM Model(s) thus producing the As-Built BIM Model. As-Built BIM Model(s) to contain all changes from Construction Change Orders and As-built markups and documentation as recorded by the Contractor throughout the Construction Phase process. Final As-Built Model shall be provided in .RVT format, .IFC format, and .NWD format.

3. **COBie Data**: The following COBie worksheets (numbered 1-4) shall be the responsibility of the Design Professional Team and shall be provided as part of the Project Closeout Phase deliverables per the BEP:

 A. **COBie Table 6-20 Worksheet 01**: Contact (People/Offices/Companies)
 B. **COBie Table 6-21 Worksheet 02**: Facility (Identification of facility (ies))
 C. **COBie Table 6-22 Worksheet 03**: Floor (description of vertical levels)
 D. **COBie Table 6-23 Worksheet 04**: Space (Spaces within a floor)

 The following COBie worksheets (numbered 5-11) shall be derived from the BIM model utilizing scheduled information from the BIM Construction Model(s) and shall be provided by the Contractor as part of the Project Closeout Phase deliverables per the BEP.

 E. **COBie Table 6-24 Worksheet 07**: Component (named equipment)

Coordinate actual data needed in each worksheet with OUA and FMD requirements. Document required data necessary in COBie worksheets and document the components which need to have data generated and captured in the BEP. It is not necessary to provide data on all model components only those required. Schedule planning meetings to determine the scope and extents of elements and components that will need to be captured in COBie worksheets, and provide a mapping scheme for migrating data fields in the BIM model to the data fields in the COBie spreadsheets as part of the BEP.
5.0 – MODEL OWNERSHIP & INSTRUMENTS OF SERVICE

5.1 – MODEL OWNERSHIP

1. The BIM model constitutes an Instrument of Service as defined by the Board of Regents Design Professional Contract (CM) section 2.1.2.1 (2.1.4.1 in Design Build (DB) Contract; 2.1.2.1 in Design Bid-Build (DBB) Contract). Therefore all items pertaining to Instruments of Service as set forth in section 2.1.2 in CM Contract (2.1.4 in DB Contract; 2.1.2 in DBB Contract) shall apply to the model. This means that as the building Owner; Board of Regents shall also have ownership of the model and can make it available to the using agency (UGA) at any time as required by the UGA.

5.2 – INSTRUMENTS OF SERVICE

Instruments of Service are those drawings, specifications, and other documents, including those in electronic form, prepared specifically for this Project by the Design Professional and its consultants. In recognition of the public ownership of the Project, the Design Professional and its consultants agree and shall be deemed to have prepared their respective Instruments of Service as architectural and engineering works and as works for hire as defined in 17 U.S.C. §§1029a)(8) and 201(b), thereby transferring and vesting in the Owner, pursuant to 17 U.S.C. §201(d), all common law, statutory, and other reserved rights, including copyrights in the Instruments of Service and in the buildings, improvements, and structures constituting the Project.

1. **Copyright.** Upon execution of this Contract, the Design Professional expressly grants, assigns, transfers, and otherwise quitclaims to the Owner, its successors, and assigns, pursuant to 17 U.S.C. §201(d), all common law, statutory, and other reserved rights, including copyrights in both the Instruments of Service and in the buildings, improvements, and structures embodying the architectural and engineering works that constitute the Project, provided that the owner shall comply with all obligations, including prompt payment of all sums, when due, under this Contract.

 A. The Design Professional shall obtain similar grants, assignments, transfers, and quitclaims from its consultants consistent with this Contract. The Design Professional warrants (and shall cause each of the Design professional’s consultants to warrant also) that this transfer of copyright and other rights is valid against the world.

2. **License to the Design Professional.** Notwithstanding the rights, ownership, grants, assignments, transfers, and quitclaims set forth in Paragraphs 2.1.2.1 in CM Contract, 2.1.2.2 in DB Contract, and, 2.1.2.1 in DBB Contract, the Owner expressly grants, assigns, and transfers a permanent and exclusive license to the Design Professional, its successors, and assigns, for the Design professional’s Instruments of Service, and to each consultant (including the consultant’s successors and assigns) of the Design Professional for such consultant’s Instruments of Service, to use, reproduce, sell, transfer, and accomplish derivative works there from, for any and all purposes.

3. **Release of Liability.** The Owner agrees and hereby forever releases the Design Professional from all liabilities that might arise from the owner’s use of the Instruments of Service or other licensed portions of the Construction. Documents for any alterations, additions, subtractions, or modifications of the Instruments of Service or of the buildings, improvements, and structures of the Project resulting there from, or for use in other Projects; provided, however, that this
release does not apply to liabilities arising from the original Instruments of Service and the buildings, improvements, and structures of the Project that have not been altered, added to, subtracted from, or modified subsequent to completion of construction of the Project by the owner, its successors, or assigns.

4. **Use of Instruments of Service.** Except for the rights and licenses granted in this Article, no other license or right shall be deemed granted or implied under this Contract. The Owner permits and authorizes the Contractor, Subcontractors, Sub-Subcontractors, and material or equipment suppliers to reproduce applicable portions of the Instruments of Service appropriate to and for use in their execution of the Work.

5. **Documents in Electronic Format.** Within forty-five calendar days of the receipt of the marked-up Construction Documents that are required to be furnished by the Contractor pursuant to the Contract Documents, the Design Professional shall provide the owner with Record Drawings and Final Documents as specified in Article 2.2.14 in CM Contract (2.1.20.1 in DB Contract; 2.2.11 in DBB Contract). In the event that the Project is terminated prior to construction, the Design Professional, upon the Owner’s request, shall provide on CD ROM’s two copies of all drawings and Project manual content then existent. Electronic drawings shall be made available for viewing in PDF, Autodesk DWF, or other approved format.

6. **Acknowledgement of Risks Concerning Electronic Media.** The Owner acknowledges that the automated conversion or transfer of electronic documents may introduce inexactitudes, anomalies, or errors. Copies of documents that may be relied upon by the Owner are limited to printed copies (also known as hardcopies) that are signed or sealed by the Design Professional and its consultants. Files in electronic media format or text, data, graphic, or other types that are furnished by the Design Professional to the Owner, are only for the convenience of the owner. Any conclusion or information obtained or derived from such electronic files will be at the user’s sole risk. When transferring documents in electronic media format, the Design Professional makes no representations as to long-term compatibility, usability, or readability of documents resulting from the use of software application packages, operating systems, or computer hardware different from those in use by the Design Professional and its consultants at the beginning of this assignment.

6.0 – COMPONENT WORKSHEET

Use the following Component Worksheet for determining which components will be tracked and assigned COBie data. This is a general list that may need to be expanded depending on the project and its components, adjust as needed and include as part of the BEP documentation and as the starting point for determining the extent of COBie data modeling required for each project.

<table>
<thead>
<tr>
<th>Components to have COBie Data</th>
<th>Property lines</th>
<th>N</th>
<th>Topography</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area Wells / Grating</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Curbs</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Pads</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planting</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sidewalks</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking Stripes</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roads</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walls</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall system</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glazing</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mullions</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Item</td>
<td>Specification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Header / Sill Height</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doors</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jambs</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door Type</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steps</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramps</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior</td>
<td>Walls</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Walls to Deck</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Walls above ceiling</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Walls – Partial height</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wall Types</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doors</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door types</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door jambs</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door header height</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door Schedule</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows</td>
<td>Window Types</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glazing</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mullions</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Header / Sill Height</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circulation</td>
<td>Floor Type</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Floor Finish</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Handrails</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Raised Floor System</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stairs</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ramps</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elevator</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Escalators</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restrooms</td>
<td>Toilet partitions</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toilets</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grab bars</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sinks</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fixtures & Accessories</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Misc.</td>
<td>Wall Protection / Corner Guards</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed millwork</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Extinguishers</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical Chases</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical penetrations</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor penetrations</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columns - Architectural</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Room Numbers</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personnel assignment</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kitchen Equipment</td>
<td>Stove</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grill</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vent hood</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prep table</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mixer</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Walk-in cooler/freezer</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reach-in cooler/freezer</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fryer</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fire suppression equipment</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Steam table</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cold food table</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ice machine</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soda fountain</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rooftop</td>
<td>Roof type</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roof construction</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vent pipes</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exhaust fans</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roof drains</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gutters</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RTU curbing</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roof railings</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parapet walls</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roof top mechanical equipment</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skylights</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reflected Ceiling Plans</td>
<td>Ceiling Type</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Skylights</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signage</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrical fixtures</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrical devices</td>
<td>N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialty Equipment</td>
<td>HVAC equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cold rooms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency drench hose</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency eye wash</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency shower</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency shower/eyewash</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eyewash shower</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust fumehood</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Furniture</th>
<th>Mechanical equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desk</td>
<td>N</td>
</tr>
<tr>
<td>Chair</td>
<td>N</td>
</tr>
<tr>
<td>Table</td>
<td>N</td>
</tr>
<tr>
<td>Side chair</td>
<td>N</td>
</tr>
<tr>
<td>Bookshelf</td>
<td>N</td>
</tr>
<tr>
<td>File cabinet</td>
<td>N</td>
</tr>
<tr>
<td>Credenza</td>
<td>N</td>
</tr>
<tr>
<td>Desktop computer</td>
<td>N</td>
</tr>
<tr>
<td>Laptop computer</td>
<td>N</td>
</tr>
<tr>
<td>Monitor</td>
<td>N</td>
</tr>
<tr>
<td>Printer</td>
<td>N</td>
</tr>
<tr>
<td>Copier</td>
<td>N</td>
</tr>
<tr>
<td>Plotter</td>
<td>N</td>
</tr>
<tr>
<td>UPS</td>
<td>N</td>
</tr>
<tr>
<td>Phone - handset</td>
<td>N</td>
</tr>
<tr>
<td>Phone - mobile</td>
<td>N</td>
</tr>
<tr>
<td>Fax machine</td>
<td>N</td>
</tr>
<tr>
<td>Artwork</td>
<td>N</td>
</tr>
<tr>
<td>Casework - fixed</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structural</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beams</td>
<td>N</td>
</tr>
<tr>
<td>Columns</td>
<td>N</td>
</tr>
<tr>
<td>Connections</td>
<td>N</td>
</tr>
<tr>
<td>Gusset plates</td>
<td>N</td>
</tr>
<tr>
<td>Bolts</td>
<td>N</td>
</tr>
<tr>
<td>Flange widths</td>
<td>N</td>
</tr>
<tr>
<td>Joists</td>
<td>N</td>
</tr>
<tr>
<td>Anchor bolts</td>
<td>N</td>
</tr>
<tr>
<td>Base plates</td>
<td>N</td>
</tr>
<tr>
<td>Misc. steel</td>
<td>N</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mechanical</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC registers/returns</td>
<td>N</td>
</tr>
<tr>
<td>Sprinklers</td>
<td>N</td>
</tr>
<tr>
<td>Air terminals – supply/returns</td>
<td>Y</td>
</tr>
<tr>
<td>HVAC flex ducts</td>
<td>N</td>
</tr>
<tr>
<td>HVAC trunks</td>
<td>N</td>
</tr>
<tr>
<td>HVAC ducts</td>
<td>N</td>
</tr>
<tr>
<td>Sprinkler trunk</td>
<td>N</td>
</tr>
<tr>
<td>Mechanical equipment</td>
<td>Y</td>
</tr>
<tr>
<td>Sprinkler heads</td>
<td>N</td>
</tr>
<tr>
<td>Sprinkler lines</td>
<td>N</td>
</tr>
<tr>
<td>Fire hoses</td>
<td>N</td>
</tr>
<tr>
<td>AHU 100 + tons</td>
<td>Y</td>
</tr>
<tr>
<td>AHU 25/99 ton</td>
<td>Y</td>
</tr>
<tr>
<td>AHU 3/24 ton</td>
<td>Y</td>
</tr>
<tr>
<td>Air compressor</td>
<td>Y</td>
</tr>
<tr>
<td>Air drier</td>
<td>Y</td>
</tr>
<tr>
<td>Computer AC unit</td>
<td>Y</td>
</tr>
<tr>
<td>Condensing unit</td>
<td>Y</td>
</tr>
<tr>
<td>Constant velocity</td>
<td>N</td>
</tr>
<tr>
<td>Cooling tower</td>
<td>N</td>
</tr>
<tr>
<td>Custodial chemical dispenser</td>
<td>N</td>
</tr>
<tr>
<td>CW pump</td>
<td>N</td>
</tr>
<tr>
<td>DDTU</td>
<td>N</td>
</tr>
<tr>
<td>Dehumidifier</td>
<td>N</td>
</tr>
<tr>
<td>Domestic water filters</td>
<td>N</td>
</tr>
<tr>
<td>Dryer</td>
<td>N</td>
</tr>
<tr>
<td>Energy recovery unit</td>
<td>Y</td>
</tr>
<tr>
<td>Exhaust fan</td>
<td>Y</td>
</tr>
<tr>
<td>Exhaust fan/fumehood</td>
<td>Y</td>
</tr>
<tr>
<td>Fan coil unit</td>
<td>Y</td>
</tr>
<tr>
<td>Fresh air supply fan</td>
<td>N</td>
</tr>
<tr>
<td>Fumehood</td>
<td>Y</td>
</tr>
<tr>
<td>HVAC vents</td>
<td>N</td>
</tr>
<tr>
<td>Pack AC</td>
<td>N</td>
</tr>
<tr>
<td>Residential furnace</td>
<td>N</td>
</tr>
<tr>
<td>Return air fans</td>
<td>N</td>
</tr>
<tr>
<td>Roof top AC unit</td>
<td>N</td>
</tr>
<tr>
<td>SAC</td>
<td>N</td>
</tr>
<tr>
<td>Steam humidifier</td>
<td>Y</td>
</tr>
<tr>
<td>Steam boiler</td>
<td>Y</td>
</tr>
<tr>
<td>Terminal reheat unit</td>
<td>Y</td>
</tr>
<tr>
<td>Terminal unit</td>
<td>Y</td>
</tr>
<tr>
<td>UHBE</td>
<td>N</td>
</tr>
<tr>
<td>UHBG</td>
<td>N</td>
</tr>
<tr>
<td>Electrical</td>
<td>Plumbing</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>UHBS</td>
<td>Plumbing fixtures</td>
</tr>
<tr>
<td>UHBW</td>
<td></td>
</tr>
<tr>
<td>Unit heater electric</td>
<td>Major plumbing trunk lines</td>
</tr>
<tr>
<td>Unit heater water</td>
<td>Minor plumbing supply lines</td>
</tr>
<tr>
<td>VAV</td>
<td>Plumbing drain lines</td>
</tr>
<tr>
<td>Window AC</td>
<td>Disconnects and shut off valves</td>
</tr>
<tr>
<td>Hot water pumps</td>
<td>Hose bibbs</td>
</tr>
<tr>
<td>Domestic booster pumps</td>
<td>Fire connections</td>
</tr>
<tr>
<td>Process chilled water pumps</td>
<td>Acid dilution tanks</td>
</tr>
<tr>
<td>Solar panel (water)</td>
<td>CD pump</td>
</tr>
<tr>
<td></td>
<td>Chiller</td>
</tr>
<tr>
<td>Switches</td>
<td>Chiller process</td>
</tr>
<tr>
<td>Receptacles</td>
<td>Coalescing filters</td>
</tr>
<tr>
<td>Data/CATV outlets</td>
<td>Faucets</td>
</tr>
<tr>
<td>Alarm devices</td>
<td>Floor drains</td>
</tr>
<tr>
<td>Thermostats</td>
<td>Roof drains</td>
</tr>
<tr>
<td>Sconces</td>
<td>Grease traps</td>
</tr>
<tr>
<td>Fire cabinets</td>
<td>Heat pump</td>
</tr>
<tr>
<td>Electrical panels</td>
<td>Heater</td>
</tr>
<tr>
<td>Wiring troughs in slabs</td>
<td>Hot water strainer</td>
</tr>
<tr>
<td>Floor receptacles</td>
<td>HW pump</td>
</tr>
<tr>
<td>Light fixtures</td>
<td>Inlet vane</td>
</tr>
<tr>
<td>Speakers</td>
<td>Liebert unit</td>
</tr>
<tr>
<td>Exit lights</td>
<td>Outdoor fountain</td>
</tr>
<tr>
<td>Emergency exit lights</td>
<td>PIU</td>
</tr>
<tr>
<td>Cameras</td>
<td>Processed chilled water</td>
</tr>
<tr>
<td>Exhaust fans</td>
<td>Processed chilled water filter</td>
</tr>
<tr>
<td>Emergency strobes</td>
<td>Water fountains</td>
</tr>
<tr>
<td>Electrical conduits (\geq ¾")</td>
<td>Domestic hot water</td>
</tr>
<tr>
<td>Electrical conduits (< ¾")</td>
<td>Hot water boiler</td>
</tr>
<tr>
<td>Data lines</td>
<td>VAC pump</td>
</tr>
<tr>
<td>Fire dampers</td>
<td>Main chilled water valves</td>
</tr>
<tr>
<td>Hangers</td>
<td>Main domestic water valves</td>
</tr>
<tr>
<td>Cable trays</td>
<td>Back flow prevention</td>
</tr>
<tr>
<td>Data port ID</td>
<td>FM 200</td>
</tr>
<tr>
<td>Circuit ID</td>
<td>Main line sewer system</td>
</tr>
<tr>
<td>Transformers</td>
<td>Cisterns</td>
</tr>
<tr>
<td>Transformer switches</td>
<td></td>
</tr>
<tr>
<td>Emergency generator</td>
<td></td>
</tr>
<tr>
<td>Switchboard</td>
<td></td>
</tr>
<tr>
<td>Switchgear</td>
<td></td>
</tr>
<tr>
<td>High voltage switches</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

1.0 – BIM Execution Plan (BEP) Agreement 02

2.0 – Overview 03

3.0 – Project initiation 03
 3.1 – Project Information 03
 3.2 – Project Goals and Objectives 03
 3.3 – Team Information 04
 3.4 – Project Phases/Milestones 05

4.0 – Model Planning 06
 4.1 – Model Managers 06
 4.2 – Planned Models 08
 4.3 – BIM File Names 09
 4.4 – Precision and Dimensioning 09
 4.5 – Model Attribute Data/COBie Data Planning 10
 4.6 – Model level of Detailing 10
 4.7 – Modeling Plan 10
 4.7.1 – Predesign/Conceptualization 10
 4.7.2 – Schematic Design Phase 10
 4.7.3 – Preliminary Design (Design Development) 11
 4.7.4 – Construction Documents 11
 4.7.5 – Bidding Phase 12
 4.7.6 – Construction Phase 12
 4.7.7 – Close Out (Design Team) 13
 4.7.8 – Close Out (Construction team) 13
1.0 – BIM EXECUTION PLAN (BEP) AGREEMENT

By signature below, this BIM Execution Plan, dated _________ is herewith approved and will be incorporated as an amendment to the Design Professional Agreement, as an amendment to the Contractor Agreement, and as an amendment to other separate consulting and commissioning agent agreements as they may apply to the list of parties co-signing this document.

The BEP shall be updated and amended at each major project phase deliverable, as new key parties or entities are brought on board the project and incorporated into the BIM Execution Plan.

Owner Representatives:

UGA Office of University Design Professionals

_____________________________ ______
Name Date

UGA Physical Plant

_____________________________ ______
Name Date

Design Team:

Design Professional

_____________________________ ______
Name Date

Structural Engineer

_____________________________ ______
Name Date

Mechanical/Electrical/Plumbing/FP Engineer

_____________________________ ______
Name Date

Civil Engineer

_____________________________ ______
Name Date

Other

_____________________________ ______
Name Date

Construction Team:

General Contractor

_____________________________ ______
Name Date

Mechanical Contractor

_____________________________ ______
Name Date

Electrical Contractor

_____________________________ ______
Name Date

Plumbing Contractor

_____________________________ ______
Name Date

Structural Contractor

_____________________________ ______
Name Date

Other

_____________________________ ______
Name Date

Other Consultants:

Commissioning Agent:

_____________________________ ______
Name Date
2.0 – OVERVIEW

The intent of this BIM Execution plan is to provide a framework that will let the owner, Design Professional, engineers, and Contractor deploy building information modeling (BIM) technology and best practices on this project. This plan delineates roles and responsibilities of each party at each phase, the scope and level of detail of information to be developed, data to be managed and shared, processes defined, and software to be utilized.

3.0 – PROJECT INITIATION

This section defines the Core Collaboration Team, the project objectives, project phases, and overall communication plan throughout the project’s phases.

3.1 – PROJECT INFORMATION

<table>
<thead>
<tr>
<th>Project Name:</th>
<th>Project Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Number:</td>
<td>Project Number</td>
</tr>
<tr>
<td>Project Address:</td>
<td>Project Address</td>
</tr>
<tr>
<td>Project Description:</td>
<td>Project Description</td>
</tr>
</tbody>
</table>

3.2 – PROJECT GOALS AND OBJECTIVES

<table>
<thead>
<tr>
<th>Project Goal(s)</th>
<th>Achieved if</th>
<th>Project Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide UGA Office of University Design Professionals with a useful BIM model that can assist in future renovations, additions and space management.</td>
<td>Model is accurate and contains all major components and systems in Revit format, updated to reflect as-built</td>
<td>Completion of Project</td>
</tr>
<tr>
<td>Provide UGA Physical Plant with useful COBie data for the facilities management of the building.</td>
<td>All required data is determined early in the project and accurately setup, managed, accumulated and exported into complete COBie worksheets that can be imported into UGA’s FM program.</td>
<td>Completion of Project</td>
</tr>
</tbody>
</table>
3.3 – TEAM INFORMATION

<table>
<thead>
<tr>
<th>Contact</th>
<th>Role/Title</th>
<th>Company</th>
<th>Email</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>title</td>
<td>company</td>
<td>email</td>
<td>p. 555-555-555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c.555-555-5555</td>
</tr>
<tr>
<td>name</td>
<td>title</td>
<td>company</td>
<td>email</td>
<td>p. 555-555-555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c.555-555-5555</td>
</tr>
<tr>
<td>name</td>
<td>title</td>
<td>company</td>
<td>email</td>
<td>p. 555-555-555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c.555-555-5555</td>
</tr>
<tr>
<td>name</td>
<td>title</td>
<td>company</td>
<td>email</td>
<td>p. 555-555-555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c.555-555-5555</td>
</tr>
<tr>
<td>name</td>
<td>title</td>
<td>company</td>
<td>email</td>
<td>p. 555-555-555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c.555-555-5555</td>
</tr>
<tr>
<td>name</td>
<td>title</td>
<td>company</td>
<td>email</td>
<td>p. 555-555-555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c.555-555-5555</td>
</tr>
<tr>
<td>name</td>
<td>title</td>
<td>company</td>
<td>email</td>
<td>p. 555-555-555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c.555-555-5555</td>
</tr>
<tr>
<td>name</td>
<td>title</td>
<td>company</td>
<td>email</td>
<td>p. 555-555-555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c.555-555-5555</td>
</tr>
<tr>
<td>name</td>
<td>title</td>
<td>company</td>
<td>email</td>
<td>p. 555-555-555</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>c.555-555-5555</td>
</tr>
</tbody>
</table>
3.4 – PROJECT PHASES / MILESTONES

<table>
<thead>
<tr>
<th>Project Phase / Milestone</th>
<th>Estimated Start Date</th>
<th>Estimated Completion Date</th>
<th>Project Stakeholders Involved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming/ Pre-Design Phase</td>
<td>MM/DD/YEAR</td>
<td>MM/DD/YEAR</td>
<td>Owner, Design Professional, Consulting engineers</td>
</tr>
<tr>
<td>Schematic Design Phase</td>
<td>MM/DD/YEAR</td>
<td>MM/DD/YEAR</td>
<td>Owner, Design Professional, Consulting engineers, Contractor</td>
</tr>
<tr>
<td>Preliminary Design Phase</td>
<td>MM/DD/YEAR</td>
<td>MM/DD/YEAR</td>
<td>Owner, Design Professional, Consulting engineers, Contractor,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Commissioning agent</td>
</tr>
<tr>
<td>Construction Documents Phase (Refer to schedule for</td>
<td>MM/DD/YEAR</td>
<td>MM/DD/YEAR</td>
<td>Owner, Design Professional, Consulting engineers, Contractor,</td>
</tr>
<tr>
<td>early bid packages)</td>
<td></td>
<td></td>
<td>Commissioning agent</td>
</tr>
<tr>
<td>Agency Review & Bidding Phase (Contractor)</td>
<td>MM/DD/YEAR</td>
<td>MM/DD/YEAR</td>
<td>Owner, Design Professional, Consulting engineers, Contractor,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Commissioning agent</td>
</tr>
<tr>
<td>Close-Out (Design Team)</td>
<td>MM/DD/YEAR</td>
<td>MM/DD/YEAR</td>
<td>Owner, Design Professional, Consulting engineers,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close-Out (Contractor)</td>
<td>MM/DD/YEAR</td>
<td>MM/DD/YEAR</td>
<td>Owner, Contractor, Commissioning agent</td>
</tr>
</tbody>
</table>
4.0 – MODEL PLANNING

Identify BIM Models that will be created (ie. Design Professional, Structural, MEP, etc), who the model managers will be from each party responsible, naming convention of BIM files that will be used for final model deliverables, and level of detail utilized at each phase.

4.1 – MODEL MANAGERS

Each party—such as the owner, Design Professional, Contractor, or sub-consultants—that is responsible for contributing modeling content should assign a model manager to the project. The model manager from each party has a number of responsibilities. They include, but are not limited to:

1. Transferring modeling content from one party to another
2. Validating the level of detail and controls as defined for each project phase
3. Validating modeling content during each phase
4. Combining or linking multiple models
5. Participating in design review and model coordination sessions
6. Communicating issues back to the internal and cross-company teams
7. Keeping file naming accurate
8. Managing version control
9. Properly storing the models in the collaborative project management system

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Model Manager</th>
<th>Email</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>company name</td>
<td>name</td>
<td>name@name.com</td>
<td>p.555-555-5555</td>
</tr>
</tbody>
</table>
4.2 – PLANNED MODELS

In the table below, outline the models that will be created for the project. List the model name, model content, project phase when the model will be delivered, the model’s authoring company, and the model-authoring tool that will be used. For models that will not be used or created in your project, just leave the row blank, and add rows for model types you anticipate needing that are not already listed.

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Model Content</th>
<th>Project Phase</th>
<th>Authoring Company</th>
<th>Authoring Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Professional Model</td>
<td>Design Professional building and component objects, code information, Room area information</td>
<td>SD,DD, CD, Construction, Close-out</td>
<td>Design Professional company name</td>
<td>Autodesk Revit Design Professional</td>
</tr>
<tr>
<td>Lab Furnishings Model</td>
<td>Design Professional Casework and Fixed Furnishings</td>
<td>DD, CD, Construction, Closeout</td>
<td>Consultant company name</td>
<td>Autodesk Revit Design Professional</td>
</tr>
<tr>
<td>Survey/Civil Model</td>
<td>Topography, site utilities to within 5 feet of perimeter, hard and soft surfaces, other site objects</td>
<td>SD, DD, CD Construction, Closeout</td>
<td>Survey Engineer company name</td>
<td>Autodesk Civil 3D</td>
</tr>
<tr>
<td>Structural Model</td>
<td>Structural column and beam members, bearing and shear walls, foundations, analytical structural model, lintels</td>
<td>DD, CD, Construction, Close-out</td>
<td>Structural Engineer company name</td>
<td>Autodesk Revit Structure</td>
</tr>
<tr>
<td>Mechanical Model</td>
<td>Mechanical systems, equipment, load information, utilities within 5 feet of building perimeter, Space/ Zone objects</td>
<td>DD, CD, Construction, Closeout</td>
<td>Mechanical Engineer company name</td>
<td>Autodesk Revit MEP</td>
</tr>
<tr>
<td>Electrical Model</td>
<td>Electrical systems, equipment, load information, utilities within 5 feet of building perimeter</td>
<td>DD, CD, Construction, Closeout</td>
<td>Electrical Engineer company name</td>
<td>Autodesk Revit MEP</td>
</tr>
<tr>
<td>Model Name</td>
<td>Model Content</td>
<td>Project Phase</td>
<td>Authoring Company</td>
<td>Authoring Tool</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
<td>---------------------</td>
<td>--------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Plumbing Model</td>
<td>Plumbing systems, equipment, load information, utilities within 5 feet of building perimeter</td>
<td>DD, CD, Construction, Closeout</td>
<td>Plumbing Engineer company name</td>
<td>Autodesk Revit MEP</td>
</tr>
<tr>
<td>Energy Model</td>
<td>Energy data, run iterations, life cycle costing, peak loads</td>
<td>DD, CD</td>
<td>Company name</td>
<td>??</td>
</tr>
<tr>
<td>Construction Model</td>
<td>Scheduling information, sequencing information Fabrication models</td>
<td>Construction, Closeout</td>
<td>Construction company name</td>
<td>Autodesk Revit, NavisWorks</td>
</tr>
<tr>
<td>Estimate Model</td>
<td>Costing data, quantity takeoffs to be derived from design professionals design intent model utilized and further developed by Contractor</td>
<td>SD, DD, CD</td>
<td>Construction company name</td>
<td>Quantity Takeoff and Onscreen Take off.</td>
</tr>
<tr>
<td>Coordination Model</td>
<td>Design Intent Models, Construction models, and Fabrication information</td>
<td>Construction</td>
<td>Design intent models by Design team. Construction and Fabrication models by Construction team</td>
<td>Autodesk NavisWorks / (Revit TBD)</td>
</tr>
</tbody>
</table>
4.3 – BIM FILE NAMES

<table>
<thead>
<tr>
<th>File Names for Models Should Be Formatted as:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISCIPLINE-Project Number-Building Number.rvt (example: ARCH-20090001-BL001.rvt).</td>
</tr>
<tr>
<td>Design Professional</td>
</tr>
<tr>
<td>Lab Furnishings Model</td>
</tr>
<tr>
<td>Survey/Civil Model</td>
</tr>
<tr>
<td>Structural Model</td>
</tr>
<tr>
<td>Mechanical Model</td>
</tr>
<tr>
<td>Electrical Model</td>
</tr>
<tr>
<td>Plumbing Model</td>
</tr>
<tr>
<td>Energy Model</td>
</tr>
<tr>
<td>Construction Model</td>
</tr>
<tr>
<td>Estimate Model</td>
</tr>
<tr>
<td>Coordination Model</td>
</tr>
</tbody>
</table>

4.4 – PRECISION AND DIMENSIONING

Models should include all appropriate dimensioning as needed for design intent, analysis, and construction. With the exception of the exclusions listed below, the model will be considered accurate and complete. In the table below, enter which items’ placement will not be considered entirely accurate and should not be relied on for placement or assembly.

<table>
<thead>
<tr>
<th>Items that Will Not Be Considered Accurate for Dimensioning or Placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Professional –</td>
</tr>
<tr>
<td>Structural –</td>
</tr>
<tr>
<td>Civil –</td>
</tr>
<tr>
<td>MEP –</td>
</tr>
<tr>
<td>Lab Furnishings –</td>
</tr>
<tr>
<td>Construction –</td>
</tr>
</tbody>
</table>
4.5 – MODEL ATTRIBUTE DATA / COBIE DATA PLANNING

Specify model component COBie data. The team will be required to add information to the BIMs that will add value to UGA’s facility management systems. In support of COBie, the Project Team is required to utilize and develop COBie schedules within the BIM model that captures data information from the model for export to COBie worksheets.

The team is expected to understand data requirement for all phases of the work, and should show how data capability requirements influence the planning and collaboration for this project. Diagramming and listing expected data requirements and processes, solving workflow dynamics for the collaborative team will address the intent of the BIM project.

Develop detailed component lists along with required data fields for each component to be captured and exported to COBie. Coordinate which parties on the Design and Construction teams are responsible for delivering data at each phase of the project and how data will be consolidated and delivered so that it meets the requirements for transfer into UGA’s facilities management program.

4.6 – MODELING LEVEL OF DETAIL

Specify the level of detail in your models below. The level of detail can be defined by exclusions and/or by object size. The level of detail described here should reflect descriptions listed within the AIA E202.

Size: Any object smaller than 1” will not be included in the model. Unless otherwise required to meet requirements of describing design intent and construction documentation requirements.

4.7 – MODELING PLAN

AIA form E202 will be utilized as a basis for developing a detailed modeling plan. The following outlines model plan objectives at each phase. Edit and further develop the following outline as required to communicate and coordinate model development to meet the requirements and objectives of the UGA BIM Requirements and Guidelines.

4.7.1 – PRE-DESIGN / CONCEPTUALIZATION

Objectives & Responsibilities: Provide initial design based on conceptual parameters established by the owner; ensure that code and zoning requirements meet project objectives. Provide Program of Requirements and all space considerations for reference in the model. If a BIM model is established at this phase then establish a 3D reference point for future model coordination.

Model Roles: Describe what kind of model will be developed and by what program. The role of this model will be to depict the visual concept and general layout of the project along with space requirements, along with other requirements as described in the UGA BIM Standards.

4.7.2 – SCHEMATIC DESIGN PHASE

Objectives: Provide spatial design based on input from the Conceptualization / Program of Requirement phase; provide initial design for building system and attributes including Design Professional, structural,
and MEP; identify initial coordination issues between building systems and 3D reference point for model coordination; if Contractor has been selected, then Contractor to receive input from suppliers and fabricators regarding system cost, placement, fabrication and scheduling.

Model Role & Responsibilities: The Design Professional model will show the general design and layout of the building structure and act as the baseline for all other subsystem designs, such as MEP and Structural models. The subsystem designs are only required to be narratives at this phase. Additional information may be provided by subsystem consultants during this phase as they see fit. The Design Professional model will be used to inform the Energy Models at this phase. Address how model development will meet the requirements of the UGA BIM Requirements and Guidelines.

COBie Data: Establish schedules and project parameters in the BIM model that will become the basis for exporting model data to COBie worksheets. Submit initial COBie data worksheets as describing in the UGA BIM Requirements and Guidelines.

4.7.3 – PRELIMINARY DESIGN (DESIGN DEVELOPMENT)

Objectives: Provide developed design of building and building systems; resolve coordination issues between building systems; if a Contractor is on board at this phase of the project then a combined (Design Professional/Structure/ MEP) Design Intent Model(s) will be provided to the Contractor for use in his development of a Construction Model capable of analyzing schedule, cost, and constructability.

Model Roles & Responsibilities: The Design Professional model will continue to act as the baseline for all other subsystem designs. The subsystem designs will be modified accordingly to represent the enhanced design. Once the baseline conceptual structure has been created, the Design Professional’s model manager will send the model to the sub-consultants so they can develop their designs. The consulting engineers’ designated model managers will audit and deliver the completed models to the Design Professional’s model manager. The Design Professional’s model manager will review the models to ensure compliance with the phase requirements. Once the models meet the requirements, the Design Professional’s model manager will link or combine cross-disciplinary models. The Design Professional’s model manager should coordinate with the consulting engineers’ model managers to eliminate duplicate or redundant objects. The consulting engineers’ model managers will use the Design Professional model to revise and complete their designs. Once the models are complete, the consulting engineers’ model managers will deliver their models to the Design Professional’s model manager. The Design Professional’s model manager will review the models to ensure compliance with the phase requirements. The Design Professional’s model manager will provide the Contractor’s model manager with the Design Professional model and the Consulting Engineers’ models. Elements or Components that will need to be duplicated between models will be documented and coordinated and a system developed for controlling the display of duplicate elements will be established through the use of work sets or other mutually agreed upon process.

COBie Data: Submit updated and additional COBie data worksheets as describing in the UGA BIM Requirements and Guidelines.

4.7.4 – CONSTRUCTION DOCUMENTS (CONTRACT DOCUMENTS)
Objectives: Finalize design of the building and all building systems, prepare documentation for agency review, and provide Design Intent Models that are the basis for all Contract Document Drawings, including all plans, elevations, sections, schedules and details needed for use in the construction of the project. Provide the Contractor a combined (Design Professional/Structure/ MEP) Design Intent Model(s) that will be utilized in his development of a Construction Model capable of analyzing schedule, cost, phasing and constructability.

Model Roles & Responsibilities: All Design Intent Models will be used to reflect the design intent of the project and be the basis for all Contract Document Drawings, these models will become the basis for creating and updating the Record Models and Record Drawings. These models will then be used as the basis for generating the Construction Model(s). The Construction Model will be used for estimating, scheduling, phasing and constructability analysis. The Construction Model(s) will also become the basis for future development of element and component data needed for the development and gathering of COBie data for periodic export into COBie worksheets.

COBie Data: Submit updated and additional COBie data worksheets as describing in the UGA BIM Requirements and Guidelines. Establish a schedule for future periodic COBie data worksheet updates to occur during the construction phase, along with final worksheet delivery at closeout.

4.7.5 – BIDDING PHASE

Objective: Revise Design Intent models based on agency feedback on all models. Incorporate feedback into Addenda. Design team to update all Design Intent Models with Addenda as issued.

Model Roles & Responsibilities: The Design Intent Models will be adjusted to reflect agency feedback. The Construction Model will be enhanced and further used for estimating, scheduling, construction sequencing, trade coordination, and constructability analysis. The Design Professional’s model manager will communicate agency comments back to the design team. The consulting engineers’ model managers will revise their design models accordingly and submit them back to the Design Professional. The Design Professional’s model manager will provide the Contractor’s model manager with the Design Professional model and the Consulting Engineers’ models.

COBie Data: No COBie data requirements at this phase.

4.7.6 – CONSTRUCTION PHASE

Objective: Update Design Professional and Consulting Engineers’ models based on submittals, RFIs, or owner-directed changes; maintain the Construction Model based on construction activities. The construction team will submit RFIs and submittals through the collaborative project management system.

Model Roles & Responsibilities: The Design Professional and Consulting Engineers’ Design intent Models will be revised throughout construction, based on owner directives and As Built comments. The models will always reflect the revised contract documents with the exception of those items listed as excluded in this BEP. The Construction Model will be used for scheduling analysis, construction sequencing, delegated design component development and trade coordination. Establish and document any departures from concurrent modeling between Design Intent and Construction Models, for example, it
may be desirable to maintain the original Design Intent Model as a record of the originally designed mechanical system as designed by the Mechanical Engineers as a reference point for evaluating and comparing any re-designed mechanical systems made by the Mechanical SubContractor as a result of delegated design responsibilities. The Design Professional’s model manager will work with their consulting engineers to answer the RFIs and submittals and adjust the models accordingly. The Contractor’s model manager will update the Construction model and will work with the Design Professional to develop the Design Professional and Consulting Engineers’ models.

COBie Data: Submit updated and additional COBie data worksheets as describing in the UGA BIM Requirements and Guidelines. Establish a schedule for periodic COBie data worksheet updates to occur during the construction phase, along with final worksheet delivery at closeout. Establish a plan for consolidating COBie data that will be exported and generated by multiple models potentially, with multiple party responsibilities that will be acceptable and useable by the Owners end user parties.

4.7.7 – CLOSE-OUT (DESIGN TEAM)

Objective: Use the Design Professional and Consulting Engineers’ Design Intent Models for facility management, with the possibility of use in ongoing operations for future additions, renovations, etc.

Model Roles & Responsibilities: The Design Professional and Consulting Engineers’ models will be used to represent the actual assembly of the building from construction with the exception of those items listed as excluded in this BEP. If Construction Models are more representative than Design Intent models of actual As-Built components such as mechanical System, then formulate a plan for combining differing models. The Design Professional will deliver the Record Design Intent Model(s) and Record Drawings at the end of the project to the owner.

COBie Data: The Design Team will coordinate with the Construction team to deliver a coordinated and consolidated COBie worksheet deliverable at closeout.

4.7.8 – CLOSE-OUT (CONSTRUCTION TEAM)

Objective: Use the Contractors Construction Model(s) as the basis for all final component data derived from shop drawing submittal process needed for UGA Physical Plant operations and facilities management.

Model Roles & Responsibilities: The Contractor’s models will be used to represent the actual assembly of the building from construction, and will be utilized in generating the final As-Built Model and Documents. It will also be used as the basis of COBie data associated with actual product selection as the result of the shop drawing and submittal processes. The Contractor will deliver the As-Built Construction Model(s) and As-Build Documents at the end of the project to the Owner.

COBie Data: The Design Team will coordinate with the Construction team to deliver a coordinated and consolidated COBie worksheet deliverable at closeout.
1. **GENERAL**

 A. Contractor shall schedule and control all work persons employed on the project. Contractor shall instruct all workers to prevent tracking dirt and debris into existing buildings. Profanity, inappropriate dress or inappropriate conduct shall not be permitted on this project. Owner reserves the right to have the Contractor remove from the project anyone who, in the sole opinion of the Owner, exhibits such behavior.

 B. **UGA Football Games:** The Design-Builder shall stop all work commencing at 3:00 pm Friday before UGA home football games and shall not work the Saturday of home football games. The construction site shall be secured to prevent unauthorized persons from entering the site. See the UGA Athletic Association webpage, www.georgiadogs.com to obtain information concerning the current schedule.
1. **GENERAL**
 A. The Owner retains the right to enter the construction limits to inspect and/or repair existing utilities, structures and property whenever necessary. Owner shall coordinate non-emergency access 24 hours in advance.
 B. Contractors shall fill out the temporary ID card request form below to receive security access to existing UGA buildings that require a UGA ID access card.
REQUEST FOR
TEMPORARY ID CARD
CONTRACTOR

Sponsor Name: ___________________________
Sponsor Department: _______________________
Department Address: _______________________
Sponsor Telephone: _________________________
Sponsor MyID: ___________________@uga.edu

RETURN TO: UGA Card Office
309 Tate Student Center
FAX: 706 542-0070

REQUIRED SPONSOR INFORMATION

Contractors for the University campus whose stay is for an extended but defined period of time, generally from one month to one year, and for a specific academic or administrative purpose, similar to work being performed by regular UGA faculty or staff, will be eligible for a sponsored Contractor ID badge.

Included in this category would be individuals whose work is based on campus but who are not part of the UGA master payroll/personnel database. (Those excluded from this category would include students, conference participants, entertainers, law enforcement agencies, and most state and federal employees.) Individuals in this category are not eligible for University services (Contractors are not eligible for discounted athletic tickets). Contact the specific service provider if there are any questions concerning the use of this card. Some University services require a participation fee.

UGACard DATABASE INFORMATION

Full Name of Contractor: ____________________________
Date of Birth ___________ Gender _____ Social Security Number: ___________________
 *Assigned Number: ___________________

For foreign contractors:
Country of citizenship __________________ Has a social security number been applied for?______
 * The UGACard Office will assign special identification numbers to foreign visitors who do not apply for social security numbers.

Purpose of work on UGA Campus: ____________________________

Job title or position: ____________________________ Contractor Company Name ____________________________

Dates Contractor Will Be On Campus: Beginning Date ___________ Ending Date ___________

Individuals in the Contractor Database may be renewed annually from July 1 through June 30.

UGA Campus Address __ Campus Phone # ___________

Department Head Approval: ____________________________ Phone:_____________ Date: ___________

Dean or Vice President Approval: ____________________________ Phone:_____________ Date: ___________

>>>Submit this request at least five days prior to coming to UGACard Office to have card made<<<

>>>Application will NOT be accepted without Sponsor MyID and Approving Signatures<<<

UGACard Office Use Only
Reviewed and Approved by: ____________________________ Date: ___________ Photo Date: ___________
Entered in Database by: ____________________________ Date: ___________

UGA DESIGN & CONSTRUCTION STANDARDS
DRAFT MAY 17, 2013
ACCESS TO SITE – RIGHT OF ENTRY
01 14 13-2
1. **GENERAL**

 A. Related sections:
 i. 01 29 73 – Schedule of Values

 B. Prior to being able to receive compensation for services, Design Professionals and Contractors, who have not previously contracted with UGA, must complete the UGA new vendor form and be current in the UGA system. The new vendor form is available at https://webapps.ais.uga.edu/UVDB-VP/home.seam.

 C. Application for Payment Procedure for Construction Manager, Design-Build, and Design-Bid-Build project delivery methods:
 i. Contractor shall submit a draft version of the Exhibit K Application for Payment (either electronically or in hard copy), and all associated back-up documentation as required by the Contract to the Design Professional and to the Project Manager for review/approval. In addition to Exhibit K Application for Payment form in the Contract, the Contractor shall provide an Application and Certificate of Payment in the America Institute of Architects (AIA) format with corresponding schedule of values breakdown. Exhibit K Application for Payment must be executed as per the Contract; however, the additional Application and Certificate for Payment in an AIA format is not required to be signed and notarized as it is provided as reference information to assist the Design Professional and Project Manager in reviewing Application for Payment back-up documentation.
 ii. Within three days of receipt of the draft version of the Application for Payment, the Design Professional and the Project Manager will either approve the Application for Payment or will provide comments to be addressed by the Contractor.
 iii. Once all comments are addressed to the satisfaction of the Design Professional and Project Manager, three originals of the approval copy of the Application for Payment will be sent by the Contractor to the Design Professional for signature. The Design Professional will retain one copy and forward two originals to the Project Manager. (Note: For Construction Manager or Design-Builder projects, the approval version of the Application for Payment only needs to include the Exhibit K coversheet and schedule of values in addition to the AIA Application and Certification of Payment form. The detailed back-up and copies of the invoices and subcontractor pay requests do not need to be re-submitted with the final Application for Payment forms.) The Design Professional will then sign and forward two originals of the Application for Payment to the Project Manager for processing and payment.

 D. Application for Payment Documentation for Construction Manager and Design-Builder projects:
 i. For the draft version of the Application for Payment, the Contractor shall include with it copies of all invoices, labor billings, subcontractor applications for payment and executed subcontractor’s interim lien releases.
 ii. The Contractor shall maintain a Contingency Log that is updated and submitted with each Application for Payment that shows any costs that have been
transferred from the contingency line item into all other line items with an explanation of each transfer.

iii. Upon approval of a Component Change Order or Change Order, the Contractor shall distribute all Component Change Order or Change Order costs among the respective line items against which the actual costs will be charged. Although Component Change Orders and Change Orders are frequently approved on a lump sum basis so as to be incorporated into the GMP, billing for the associated work is on a cost-plus basis with a maximum price and if the total value of the change order funds is not spent, the remaining value of the Component Change Order and/or Change Order will be returned to contingency funds.

E. **UGA Athletic Association projects only**: Exhibit K Application for Payment is not required. Form of Application for Payment shall be per the form of agreement between the Contractor and the UGA Athletic Association. Application for Payment documentation as listed in this section 01 29 00 applies.

F. **UGA Real Estate Foundation projects only**: Exhibit K Application for Payment is not required. Form of Application for Payment shall be per the form of agreement between the Contractor and the UGA Real Estate Foundation. Application for Payment documentation as listed in this section applies 01 29 00 applies.
1. **GENERAL**
 A. Related sections:
 i. 01 29 00 – Payment Procedures
 B. The Contractor shall submit a draft of the Schedule of Values (SOV) to the Project Manager and Design Professional for approval prior to the first pay request being submitted.
 C. The SOV shall include the following column headings at a minimum: original scheduled value, change orders, revised schedule of values, previous billings, current billings, stored materials, total completed and stored to date, and retainage.
 D. Contractor Construction Overhead Costs (General Conditions) shall be listed as a separate line item within the SOV.
 E. Insurance shall be listed as a separate line item within the SOV.
 F. Performance and payment bonds shall be listed as a separate line item within the SOV.
 G. For projects implementing Building Information Modeling (BIM), there shall be a separate line item within the SOV for BIM related costs.
 H. The following items, specific to Construction Manager and Design-Builder project delivery methods, shall be listed as separate line items within the SOV:
 i. Pre-construction Overhead Costs and Expenses (General Conditions)
 ii. Pre-construction Fee
 iii. Construction Fee
 iv. Contractor Contingency
 I. For Construction Manager and Design-Builder projects, each line of the SOV shall correspond to the subcontract amount for only one subcontractor so that the required back-up subcontractor payment applications matches a specific SOV line item. In the event that there is more than one subcontract representing a scope of work (for example steel could possibly be subdivided into steel erection, steel fabrication and miscellaneous metals), the SOV should be subdivided accordingly.
 J. For Construction Manager or Design-Build projects, the change order amounts shall be distributed among each of the separate line items as appropriate to allow for the billings to be tracked against each corresponding subcontractor’s pay request.
 K. For projects awarded on a lump sum basis, the change orders can be added as lump sums on a new line added below the total line for the original base contract amount.
 L. For projects awarded on a lump sum basis, the Fee shall be allocated on a percentage basis among each of the line items.
 M. For projects awarded on a lump sum basis, the SOV should be detailed enough to allow for proper review and analysis of percentages of work complete. For example, electrical should be subdivided into such categories as exterior power, exterior lighting, interior lighting, switchgear and panels, devices, conduit and wiring, telecommunications, fire alarm system, etc.
1. GENERAL

A. To access previous records of as-built and construction drawings for existing buildings on the UGA Campus:
 i. Link: https://plansroom.fmd.uga.edu/
 a. This secure website requires a username and password to access the files. A UGA MyID username and password is required to access this secure website. A visitor username (ppdvis) and password are available for access by non-UGA personnel. To request a password for a visitor username, send an e-mail inquiry to: plansroom@uga.edu.

B. To access Facilities Inventory drawings (simple building floor plan drawings that include room names, room numbers, and square footage):
 i. Adobe Acrobat PDF Files
 a. Link: https://pdfdrawings.fmd.uga.edu/
 1) This secure website requires a username and password to access the files. A UGA MyID username and password is required to access this secure website. A visitor username (ppdvis) and password are available for access by non-UGA personnel. To request a password for a visitor username, send an e-mail inquiry to: plansroom@uga.edu.

 ii. AutoCAD Files
 a. Link: https://drawings.fmd.uga.edu/
 1) This secure website requires a username and password to access the files. A UGA MyID username and password is required to access this secure website. A visitor username (ppdvis) and password are available for access by non-UGA personnel. To request a password for a visitor username, send an e-mail inquiry to: plansroom@uga.edu.
1. GENERAL
 A. Related sections:
 i. 01 00 07 – BIM Standards
 ii. 01 31 23 – Project Website
 iii. 01 31 26 – Electronic Communication Protocols
 iv. 01 33 00 – Submittal Procedures
 v. 01 78 00 – Closeout Submittals
 B. These are minimum requirements for consistent documentation for the review, construction, and archiving for all Projects.
 C. Document Minimum Requirements
 i. Project title consistent with Design Professional Contract title and current date on all sheets.
 ii. Project number and bid number (if applicable) on all sheets.
 iii. Type of submittal (examples: Schematic Design, Design Documents, Construction Documents, GMP, BID, As-Builts) and current date on all sheets.
 iv. Any changes after construction release shall be shown as Revision 1, 2, 3, etc., and clouded & noted with proper revision reference on all revised sheets and noted on index.
 v. Accurate index with any revised sheets noted as revised, UGA location map showing at least one major road or intersection on cover sheet (campus maps are available for download at http://www.architects.uga.edu/maps/current).
 vi. Building key plan with graphic scale and north arrow on each drawing sheet.
 vii. Sheet size preference is Standard Arch D (24x36). Larger sheet size Arch E1 (30x42) or Arch E (36x48) is acceptable only when necessary.
 viii. Font size shall be minimum of 12pt when printed to scale.
 ix. Microsoft Word files shall be 2007 or later.
 x. Electronic file names shall be no longer than 15 characters using only Microsoft acceptable file names and shall be delivered by CD-Rom (s), flash drive, file download, or other acceptable deliverable.
 xi. For projects that do not require BIM, AutoCAD files shall be version 2007 or later and be whole and complete with NO Xrefs to symbols or other drawings.
 xii. Hard copy drawings shall be full size black line on white bond reproductions and be bound. Specifications shall be 8.5”x11” and bound.
 D. Deliverables
 i. This section does not replace, but supplements, the standard project deliverables stated in Section 2 of the Design Professional Contracts, Design-Build Contracts, Design-Bid-Build Contracts, Construction Manager Contracts, and as required for permitting by the BOR.
 ii. All drawings and specifications shall be submitted in AutoCAD (.dwg), Revit (.rvt) (depending on if BIM is utilized), Microsoft Word (.doc), and Adobe PDF (.pdf) formats. All PDF files shall be searchable.
 iii. Drawings and specifications shall each be submitted as one PDF binder set and as separate files for each drawing sheet/specification section.
iv. Internal UGA Milestone Deliverables: The following chart documents minimum internal UGA deliverable drawing sets for OUA and FMD use in reviewing milestone submissions. All deliverables shall be submitted to the Project Manager, who will then distribute contents to the entities detailed in the chart below.

<table>
<thead>
<tr>
<th>PROJECT STAGE</th>
<th>OUA Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Size Printed Drawing Set</td>
<td>Half Size Printed Drawing Set</td>
</tr>
<tr>
<td>Site Evaluation & Planning Services</td>
<td>1 - For OUA 1 - For FMD 1 - For End-User</td>
</tr>
<tr>
<td>Schematic Design & Design Development</td>
<td>1 - For OUA 1 - For FMD 1 - For End-User</td>
</tr>
<tr>
<td>50% - Construction Documents</td>
<td>1 - For OUA 1 - For FMD 1 - For End-User</td>
</tr>
<tr>
<td>75% - Construction Documents</td>
<td>1 - For OUA 1 - For FMD 1 - For End-User</td>
</tr>
<tr>
<td>95% - Construction Documents</td>
<td>1 - For OUA 1 - For FMD 1 - For End-User</td>
</tr>
<tr>
<td>100% - Construction Documents</td>
<td>1 - For OUA 1 - For FMD 2 - For Fire Safety*</td>
</tr>
<tr>
<td>Closeout</td>
<td>Refer to 01 78 00 - Closeout Submittals for Closeout</td>
</tr>
</tbody>
</table>

*If project will be permitted through UGA Fire Safety, then two sets are required for UGA Fire Safety. If permitted through State Fire Marshal, then one set is required for UGA Fire Safety.
If project will be permitted through UGA Fire Safety, then two sets are required for UGA Fire Safety. If permitted through State Fire Marshal, then one set is required for UGA Fire Safety.

<table>
<thead>
<tr>
<th>PROJECT STAGE</th>
<th>Full Size Printed Drawing Set</th>
<th>Half Size Printed Drawing Set</th>
<th>Full Electronic Drawing Set on CD or DVD</th>
<th>Project Manual/Specifications</th>
<th>Other Deliverables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Evaluation & Planning Services</td>
<td>1 - For FMD</td>
<td>1 - For FMD</td>
<td>1 - For FMD</td>
<td>1 - For FMD</td>
<td>MEP Design Concepts - Narratives</td>
</tr>
<tr>
<td></td>
<td>0 - For OUA</td>
<td>0 - For OUA</td>
<td>0 - For OUA</td>
<td>0 - For OUA</td>
<td></td>
</tr>
<tr>
<td>Schematic Design & Design Development</td>
<td>1 - For FMD</td>
<td>1 - For FMD</td>
<td>1 - For FMD</td>
<td>1 - For FMD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 - For OUA</td>
<td>0 - For OUA</td>
<td>0 - For OUA</td>
<td>0 - For OUA</td>
<td></td>
</tr>
<tr>
<td>50% - Construction Documents</td>
<td>1 - For FMD</td>
<td>1 - For FMD</td>
<td>1 - For FMD</td>
<td>1 - For FMD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 - For OUA</td>
<td>0 - For OUA</td>
<td>0 - For OUA</td>
<td>0 - For OUA</td>
<td></td>
</tr>
<tr>
<td>75% - Construction Documents</td>
<td>1 - For FMD</td>
<td>1 - For FMD</td>
<td>1 - For FMD</td>
<td>1 - For FMD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 - For OUA</td>
<td>0 - For OUA</td>
<td>0 - For OUA</td>
<td>0 - For OUA</td>
<td></td>
</tr>
<tr>
<td>95% - Construction Documents</td>
<td>1 - For FMD</td>
<td>1 - For FMD</td>
<td>1 - For FMD</td>
<td>1 - For FMD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 - For OUA</td>
<td>0 - For OUA</td>
<td>0 - For OUA</td>
<td>0 - For OUA</td>
<td></td>
</tr>
<tr>
<td>100% - Construction Documents</td>
<td>1 - For FMD</td>
<td>1 - For FMD</td>
<td>1 - For FMD</td>
<td>1 - For FMD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 - For OUA</td>
<td>0 - For OUA</td>
<td>0 - For OUA</td>
<td>0 - For OUA</td>
<td>2 - For Fire Safety*</td>
</tr>
<tr>
<td></td>
<td>2 - For Fire Safety*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closeout</td>
<td></td>
<td></td>
<td>Refer to 01 78 00 - Closeout Submittals for Closeout</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
v. Simplified Floor Plan: Within 10 days at the issuance of 100% or “For Construction” Documents, the Design Professional is required to prepare simplified project floor plans (if any). The simplified floor plans shall be a 2D AutoCAD drawing and shall only contain the layers and associate attributes listed in the chart below. The electronic AutoCAD (.dwg) file shall be submitted via e-mail to the Project Manager.

<table>
<thead>
<tr>
<th>LAYER</th>
<th>DESCRIPTION OF ITEMS</th>
<th>COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR-COLUMN</td>
<td>All columns</td>
<td>RED</td>
</tr>
<tr>
<td>AR-COLUMN LINE</td>
<td>All column centerlines</td>
<td>YELLOW</td>
</tr>
<tr>
<td>AR-DOOR</td>
<td>All doors</td>
<td>CYAN</td>
</tr>
<tr>
<td>AR-ELEVATOR</td>
<td>All elevators</td>
<td>GREEN</td>
</tr>
<tr>
<td>AR-FEATURE</td>
<td>Any permanent building feature (built in desk units that define an area, bathroom stalls, auditorium seating, overhang of roof, turn styles, exterior walkways, etc.)</td>
<td>BLUE</td>
</tr>
<tr>
<td>AR-STAIR</td>
<td>All stairs, handrails, and ADA ramps</td>
<td>254</td>
</tr>
<tr>
<td>AR-WALLS</td>
<td>All exterior and interior wall faces</td>
<td>RED</td>
</tr>
<tr>
<td>AR-WINDOW</td>
<td>All windows and store fronts in exterior and interior walls</td>
<td>YELLOW</td>
</tr>
<tr>
<td>AREA</td>
<td>All polylines that define rooms, hallways, or floor</td>
<td>WHITE</td>
</tr>
<tr>
<td>FI-TEXT</td>
<td>All relevant text for room numbers and room use</td>
<td>GREEN</td>
</tr>
</tbody>
</table>
1. GENERAL
 A. The Contractor shall schedule at the convenience of the Owner a Pre-Construction Meeting at least fourteen calendar days prior to beginning any construction. The meeting shall include as a minimum the Contractor’s authorized representative, the Design Professional and the Owner’s authorized representatives. The Contractor shall invite the User, University utilities and infrastructure representatives as suggested by the Owner, Contractor, Contractor’s Sub-contractors and the Owner’s Testing Agency representatives. For projects with a Land Disturbance Activities permit and/or a NPDES permit, the University of Georgia Environmental Safety Division shall be invited to the pre-construction meeting. The conference shall be held at a time convenient to the Owner and held at the construction site. The conference agenda shall include introduction of key personnel and responsibilities; review of project schedule; job site logistics; contract specifications; contract administration; and University policies and procedures.
1. GENERAL

 A. After every design meeting the Design Professional shall issue a meeting summary within seven calendar days after the meeting date. The meeting summary shall include a list of attendees, the meeting date, topic, and all action items and decisions. The meeting summary shall be emailed to the Project Manager as well as to others requested by the Project Manager.

 B. After every construction meeting the Contractor shall issue a meeting summary within seven calendar days after the meeting date. The meeting summary shall include a list of attendees, the meeting date, topic, and all action items and decisions. The meeting summary shall be emailed to the Project Manager as well as to others requested by the Project Manager.
1. **GENERAL**

 A. For Construction Manager and Design-Build project delivery methods:

 i. The Contractor shall provide a secure website or File Transfer Protocol (FTP) system to allow transfer of electronic files between the Design Professional, Contractor, and UGA.

 ii. The Contractor shall provide login and password information to UGA personnel as requested by the Project Manager.

 B. For Design-Bid-Build project delivery methods:

 i. The Design Professional shall provide a secure website or File Transfer Protocol (FTP) system to allow transfer of electronic files between the Design Professional, Contractor, and UGA.

 ii. The Design Professional shall provide login and password information to UGA personnel as requested by the Project Manager.

 C. The secure website or FTP system shall be maintained from project inception through Final Completion.

 D. As a minimum the Design Professional shall make available for download drawings and specifications at each review milestone and as requested by the Project Manager.

 E. After construction documents are issued for construction, the Design Professional shall make available for download any revisions including supplementary sketches and documents.

 i. The drawings shall be both in a CAD file format “.dwg” and a portable document format “.pdf”. CAD files must have x-refs bound into the file.

 ii. The specifications shall be able to be read with Microsoft Word and allow for a global search.
01 32 16
CONSTRUCTION PROGRESS SCHEDULE

1. GENERAL
 A. Related sections:
 i. 01 35 46 – Indoor Air Quality – During Construction
 B. Schedules shall include timeframes required to insure that off-gassing is substantially complete prior to occupancy. Refer to 01 35 46 Indoor Air Quality – During Construction.
 C. Schedule shall include delivery and installation of furniture (regardless of whether it is Owner provided or Contractor provided) per direction of Project Manager.
 D. Schedule shall include final in place mock ups of interior paint samples with final light fixture and lamps in place.
 E. Schedule shall include date of required activation of data connections for the digital controls system.
 F. Schedule shall include adequate time for the completion of testing, adjusting, and balancing for HVAC prior to Material Completion. The Contractor shall take the time for resolution of these issues by the responsible party into account in the schedule. A ‘contingency’ of an additional week or two should be incorporated into the balancing plan schedule to accommodate additional time required for the responsible party to correct any minor issues preventing design performance of the building.
 G. The schedule shall include 80% and 100% fire marshal inspections.
 H. The schedule shall include training which shall be completed prior to Material Completion.
 I. The schedule shall include preparation and review of closeout submittals. Closeout submittals shall be submitted at or prior to Material Completion.
01 33 00
SUBMITTAL PROCEDURES

1. GENERAL
 A. Refer to related sections:
 i. 01 31 00.02 – Design Professional Documentation Requirements & Deliverables
 ii. 00 73 00.03 – UGA Special Conditions for Contractor for Construction Manager Project section ‘Submittals’.
 iii. 00 73 00.02 – UGA Special Conditions for Contractor for Design-Bid-Build Project section ‘Submittals’
 iv. 00 73 00.05 – UGA Special Conditions for Design Build Project section ‘Submittals’
 v. 01 78 00 Closeout Submittals
SPECIAL PROJECT PROCEDURES – UTILITY & SYSTEMS OUTAGES

1. GENERAL
 A. Connections To Existing Utilities: All utility work involving connections to existing utility systems (including but not limited to: electrical, communications, water, gas, steam, chill water, storm water & sanitary systems) shall be coordinated with the Owner. Contractor shall inform the Owner prior to any proposed shutdown, outage or work of any nature which will interrupt or disturb any building utility system or equipment served by that system. A minimum of 72-hours notice is required for the Owner to make all necessary arrangements for this work, and such shutdowns shall be scheduled at the convenience of the Owner.

 B. Fire Alarm And Fire Sprinkler Deactivation (Less Than 4 Hours At One Time): If the project has an existing fire alarm system and or fire sprinkler system that will be encountered during the Work that will from time to time require temporary deactivation (for less than 4 hours), the Contractor shall contact the Owner’s Representative a minimum of 72 hours in advance to coordinate deactivation request. The Contractor shall also make the following notifications:
 i. University of Georgia Environmental Safety Division, Fire Safety (706) 369-5706
 ii. University of Georgia Police Department (706) 542-5813
 iii. University of Georgia Fire Alarm Monitoring Company, Fire Protection Associates (706) 548-8659
 iv. University of Georgia specific facility affected

 C. Fire Alarm And Fire Sprinkler Deactivation (More Than 4 Hours At One Time): If a sprinkler or fire alarm system on the campus of the University of Georgia is out of service for more than four hours, a fire watch must be implemented according to the following procedures.
 i. Notifications:
 a. University of Georgia Environmental Safety Division, Fire Safety (706) 369-5706
 b. University of Georgia Police Department (706) 542-5813
 c. University of Georgia Fire Alarm Monitoring Company, Fire Protection Associates (706) 548-8659
 d. University of Georgia specific facility affected
 ii. Fire Watch Duties
 a. Person(s) on fire watch duty should not have any other responsibility during the time the fire watch is in effect and must keep a cell phone in his/her possession at all times during the fire watch.
 b. Patrol the entire area affected by the service outage every 30 minutes and look for any signs of fire, smoke and any activities that could create a fire.
 c. Keep a log of all fire watch patrols.
 d. Maintain fire watch for one hour beyond the last time that welding operations occurred.
 e. If a fire is discovered:
 1) Activate the building alarm system if in service.
 2) Call 911 to report the fire
3) If the building fire alarm system is out of service, ask the campus police to assist in the evacuation of the building.

4) Notify others on the floor of the fire.

5) Do not attempt to fight the fire unless you have been trained on the use of portable fire extinguishers.

f. Once the need for a temporary fire watch has passed and the fire protection system has been fully restored, the person on fire watch duty will cancel the fire watch by contacting the UGA Environmental Safety Department, the UGA Police Department, the UGA Fire Alarm monitoring company and the UGA specific facility that is affected by the fire watch.

iii. All costs associated with the fire watch shall be included in the Cost of the Work or Base Bid.
1. GENERAL
 A. Roofing & Hot Work: To complement the requirements of previously cited NFPA-241, regarding Contractor’s duties during the execution of work under this contract, the Owner requires that the Contractor comply with the following guidelines for all roofing projects and all other projects which require hot work. Hot work includes any construction activity that presents a source of ignition, such as welding, burning/cutting, heating, brazing and soldering. Contractor shall, prior to the start of work at the site, develop a documented fire safety plan for all areas included under this contract. Such plan shall be the result of a complete assessment by the Contractor to minimize the potential for damage as a result of an uncontrolled fire and must be submitted to the Owner’s designated fire safety representative for review and approval. The fire safety plan must include, but need not be limited to, the description and documentation of each of the following elements:

 i. Control Of Combustibles
 a. Contractor shall visually inspect entire project location to identify combustible and non-combustible construction. Contractor shall identify sealed, inaccessible combustible spaces.
 b. Contractor shall identify and relocate all movable combustibles at least 35 feet horizontally from the work site. Where not possible, Contractor shall protect such combustibles with flame-proof covers or otherwise shield them with metal fire resistant guards or curtains.

 ii. Control Of Combustibles
 a. Contractor shall comply with the Owner’s documented hot work permit system, including the following minimum requirements:
 1) Contractor shall identify names and locations of fire watches for all hot work operations.
 2) Contractor shall identify timing and duration of all proposed hot work. Permits shall be valid for time specified on permit, as appropriate for the project needs.
 3) Contractor shall employ dedicated fire watches, which shall be located in direct visual contact of all areas of hot work operations including the underside of combustible attic spaces. If area of proposed work is not accessible from beneath, Contractor shall not under any circumstances use torches or direct flame.
 4) Contractor shall maintain a daily log of activities, including accurate project records of all fire watch activities.
 5) Contractor shall assign responsibility for overseeing fire watches to specific individual(s) whose only duty is to watch for and to prevent fires occurring due to hot work. This individual(s) shall be listed on permit as responsible.
 6) Each Contractor’s fire watcher shall employ an operable cellular phone for immediate notification of fire department in the event of a fire.
7) Contractor shall be responsible for immediate fire department notification in case of fire.

8) Contractor shall continue fire watches for at least one hour after any hot work operations are completed.

b. Contractor shall comply with the following minimum suppression requirements

1) Contractor shall provide 10 lb. multi-purpose dry chemical fire extinguishers within 20 feet of the operation.

2) Where hot work, if approved by the Owner’s designated fire safety representative, is necessary near combustible attic spaces, Contractor shall provide a charged hose line from building standpipe or hydrant. This requirement shall be coordinated with the Owner’s fire safety coordinator to insure standpipe or hydrant are available and that person(s) operating the charged hose line is properly trained and qualified to operate the hose.

3) Contractor’s fire watchers shall have fire extinguishing equipment readily available, and shall be trained in the proper use of all such equipment; proof of such training shall be included in fire safety plan.

iii. Fire Watch: If fire watches are required to be employed, the Contractor shall retain an independent consultant to provide a system of documented audits of compliance with fire watch provisions and NFPA 241. Contractor shall select the consultant from a list of approved firms furnished by the Owner at the pre-construction meeting. The cost for fire watch provisions, if applicable, shall be included in the Contractor Overhead Cost or Base Bid. Contractor shall note that the approval of the Contractor’s fire safety plan by the Owner’s fire safety representative does not relieve the Contractor from any duty to protect the Owner’s property during the execution of work under this Contract. The Owner shall make available to the Contractor, upon written request, all documented information in the Owner’s possession concerning the construction of the building or buildings included under this contract. The Contractor is ultimately responsible for minimizing the potential for fire damage while performing all work under this contract. If fire watch is approved, Contractor shall provide the fire watch contact information to University of Georgia Police Department 24 hours in advance of the fire watch.

iv. Commercial Umbrella Liability Insurance: For General Requirements 1.5.3.5 the umbrella coverage shall be increased to $10,000,000 per Occurrence and $10,000,000 Aggregate.
1. **GENERAL**

 A. Contractor shall provide barriers and warning signs to delineate the construction area and to designate the “Danger” area. This danger area shall be the area immediately surrounding the location where the Work is being completed. The exact location of the barriers shall be determined by the Contractor and coordinated with the Owner prior to beginning construction. The barriers shall be placed by the Contractor to warn and protect persons from any hazards, which may occur during the course of construction. The Contractor may elect to erect a fence to protect the limits of construction and to secure materials kept on site. Associated costs shall be included in the Contractor Overhead Cost or Base Bid.
1. GENERAL
 A. Related sections:
 i. 01 32 16 – Construction Progress Schedule
 ii. 06 00 00 – General Wood, Plastics, and Composites Requirements
 iii. 09 00 00 – General Finishes Requirements
 iv. 09 20 00 – Plaster and Gypsum Board
 v. 09 60 00 – Flooring
 vi. 09 68 00 – Carpeting
 vii. 09 91 23 – Interior Painting
 viii. 12 00 00 – General Furnishings Requirements
 B. Smoking
 i. Smoking shall not be allowed in University of Georgia facilities.

2. PRODUCTS
 A. Low volatile organic compound (VOC) materials shall be used within the interior weatherproofing of the facility; zero when available. Provide documentation to the Project Manager as requested. If there is a conflict between the VOC identified listed in the documents listed below, the one that allows the least VOCs shall apply.
 i. Architectural coatings shall not exceed VOC limits established by the South Coast Air Quality Management (SCAQMD) Rule 1113, in effect January 1, 2004.
 ii. Adhesives, adhesive bonding primers, adhesive primers, sealants, sealant primers, and any other primers shall not exceed VOC limits established by the South Coast Air Quality Management (SCAQMD) Rule 1168, in effect January 1, 2004.
 v. Hard surface flooring products shall be FloorScore certified (current as of the date of this Standard).
 vi. Carpeting, including pad or backing, shall meet or exceed the requirements of Green Label Plus, set by the Carpet and Rug Institute.
 vii. Composite wood and agrifiber products that are part of the base building elements (not furniture or seating) shall not contain any added urea-formaldehyde resins.
 viii. New furniture and seating shall be certified by GREENGUARD Environment Institute.

3. EXECUTION
 A. Maintain minimum MERV 8 air filters during construction.
 B. Fumes
 i. During the performance of work under this Contract, the Contractor may elect to engage in activities, or to use methods and materials, that result in fumes being generated and dispersed in occupied areas. In addition to complying with all codes and ordinances having jurisdiction, Contractor shall perform his work
in a manner that shall minimize or completely eliminate the probability of such an occurrence. However, if fumes of any nature are generated or released by the Contractor to occupied portions of the building, such fumes shall be contained and exhausted from the spaces in accordance with previously cited codes and ordinances. If any Contractor-generated or Contractor-released fumes spread to occupied spaces, Contractor shall:

a. Stop work causing fume generation or release.
b. Contact the Owner’s Representative (for information only).
c. Determine the nature and extent of fume release.
d. Purge all areas of these fumes; clean up areas if fumes deposited dirt or particulate matter.
e. Change work methods to eliminate fumes.
f. Continue working after steps 1 to 5 have been accomplished.

C. For facilities that will have portions remain occupied during construction, the Contractor shall develop an indoor air quality management plan in compliance with Sheet Metal and Air Conditioning Contractor’s National Association (SMACNA) Indoor Air Quality Guidelines for Occupied Buildings Under Construction, 2007.

D. For projects over 10,000 square feet, per the requirements of this section, either building flush-out or demonstration of compliance with indoor air quality air testing requirements is required prior to occupancy. All interior finishes shall be installed. It is preferable for movable furnishings and partitions, desk systems and workstations to be in place, however, this is not required.

i. Building flush out:

a. Building flush out is required prior to occupancy. If End-Users will begin inhabiting the renovated areas or new facility at Material Completion than building-flush out shall be complete prior to Material Completion. If End-Users will not begin inhabiting the renovated areas or new facility prior to Final Completion, then building flush out shall be complete prior to Final Completion.
b. Building flush out shall be performed after all interior finishes are installed.
c. Following the U. S. Green Building Council guidelines, perform a building flush out that provides 14,000 cubic feet of outdoor air per square per foot while maintaining a minimum interior temperature of 60 degrees with a relative humidity of less than 60%.
d. The Design Professional shall calculate how much outside air will be required for flush out and include in the specifications the number of days required for the project mechanical system to flush out the facility and the Contractor shall include the required days in the construction progress schedule.
e. Prior to building flush install all new filtration media.

ii. Air testing:

a. Use protocols consistent with the EPA Compendium of Methods for the Determination of Air Pollutants in Indoor Air.
b. Documented compliance with the following indoor air quality requirement is required prior to occupancy. If End-Users will begin inhabiting the renovated areas or new facility at Material Completion
than air testing compliance shall be complete prior to Material Completion. If End-Users will not begin inhabiting the renovated areas or new facility prior to Final Completion, then air testing compliance shall be complete prior to Final Completion.

c. Air testing shall demonstrate that the following maximum concentrations are not exceeded:

1) Formaldehyde 27 parts per billion
2) Particulates (PM 10) 50 micrograms per cubic meter
3) Total VOCs 500 micrograms per cubic meter
4) 4-Phenylcyclohexine 6.5 micrograms per cubic meter
5) Carbon monoxide 9 parts per million
1. **GENERAL**

1. GENERAL
 A. Related sections:
 i. 01 41 26.02 – Permit Requirements Local Utility Permits
 ii. 01 41 26.03 – Permit Requirements Construction Permits
 B. The Design Professional is responsible for identifying which various reviews and permits related to site development are required and meeting the design requirements of the entity having jurisdiction for the location of the project. The DP shall apply for and submit documents for all applicable permits and make design revisions as required until the permits can be obtained.
 C. Types of local site development permits and reviews may include, but are not limited to:
 i. Land Development / Land-Disturbing Activities (LDA) Permit
 ii. Stormwater Management Review
 iii. Driveway Permit
 iv. Traffic Impact Analysis
 v. Right of Way Encroachment
 vi. Traffic Control Review
 vii. Flood Plain Control Permit
 viii. Activity within Tree Protection Zone
 D. Right of way (ROW) Encroachment / Driveway Permit
 i. The Design Professional is responsible for verifying the sidewalk, driveway, and roadway ownership in the location of the project. Work in or adjacent to a road that is not owned by the BOR may require a ROW Encroachment permit and / or a Driveway permit. The Design Professional is cautioned that many BOR campuses and other groups of areas that appear to be large masses of land owned by BOR, often have roadways with associated right of ways through those land masses that are not owned by the BOR.
 E. Roadway Ownership – UGA Athens Only
 i. The Design Professional can review the map of which roads at the UGA main campus in Athens, Georgia are owned by Athens-Clarke County. The map is located at the end of this section.
 F. Athens-Clarke County:
 i. Land Disturbance Activities Permit:
 a. The UGA main campus is in Athens, Georgia in Athens-Clarke County. An LDA is required for any activity that removes ground cover and exposes bare soil to erosion when the net disturbance covers one acre or more; or when the disturbance is within 200 feet of state waters such as creeks, streams, rivers, ponds, etc.
 ii. Stormwater Management Permit
 a. The University of Georgia main campus is in Athens, Georgia in Athens-Clarke County. A Stormwater Management Permit is needed for any land development that creates 10,000 square feet or more of impervious cover, or that replaces one acre or more of impervious cover, or that involves other land development activity of one acre or more.
b. The permit is obtained from the Transportation & Public Works Department and requires an application, fees, and a stormwater management plan prepared by a professional engineer or landscape architect licensed in Georgia. The plan must meet Athens-Clarke County requirements, and must be reviewed and approved by the department prior to permit issuance.

iii. Stream Buffer:
 a. The regulation in Athens-Clarke County is that stream buffers are protected for 75 feet on both sides of the stream bank. However, the agreement between the Board of Regents and Athens-Clarke County acknowledges that the stream buffer for a Board of Regents property located within Athens-Clarke County is to be reduced from a 75 feet buffer zone to a 25 feet buffer zone.
1. GENERAL
 A. Related sections:
 i. 01 41 26.01 – Permit Requirements Local Site Development Permits
 B. The Design Professional is responsible for identifying which various reviews and permits related to utility permits are required and meeting the design requirements of the entity having jurisdiction for the location of the project. The Design Professional shall apply for and submit documents for all applicable permits and make design revisions as required until the permits can be obtained.
 C. Types of local utility permits and reviews may include, but are not limited to:
 i. Stormwater Management Review (see section 01 41 26.02 Local Site Development Permit section).
1. **GENERAL**

 A. Related sections:

 i. 01 41 26.01 – Permit Requirements – Local Site Development Permits

 ii. 01 41 26.02 – Permit Requirements – Local Utility Permits

 B. The state of Georgia Office of the Insurance and Safety Fire Commissioner (Georgia State Fire Marshal) has jurisdiction on Board of Regents Property located in the state of Georgia, unless noted otherwise. Design Professionals should not contact the local building authority, unless guided otherwise. For state owned property, the State Fire Marshal has jurisdiction related to construction permits, 80% and 100% inspections, certificate of occupancy, etc. Note: Local site development and utility work may require permits through the local city / county authority.

 C. Leased property: When the BOR leases property outside state owned property the construction permit will be obtained from the local city/county authority having jurisdiction.

 D. Variance: In the instance that modifications need to be made, which, therefore, deviates from the approved permit by the Georgia State Fire Marshal, the Design Professional can only request for a variance with the written approval by the Associate Vice President of Facilities Planning.

 E. UGA Fire Safety: For renovation projects where the cost of the renovation is up to 50% of the assessed value of the structure as determined by the insured value by the records of the State Department of Administrative Services, the University of Georgia shall provide the following services on all University owned and operated or occupied buildings and structures on behalf of the Office of the Insurance and Safety Fire Commissioner and the Safety Fire Division:

 i. Conduct plan reviews, provide comments and approvals, and issue building permits for renovation projects.

 ii. Plan reviews and inspections are of small renovations that involve life safety code features including (but not limited to) egress and exiting, fire alarm systems, incidental changes to sprinkler systems, occupancy changes for incidental use areas, egress lighting, emergency lighting and other relevant life safety and building code features.

 iii. Conduct field inspections when a project has reached 80% completion and 100% completion and conduct site consultative inspections.
1. **GENERAL**

 A. The Owner will contract directly with the Owner’s Testing Agency.

 B. Design Professional to prepare schedule of special inspections for the Project.

 C. **Testing**

 i. The Owner reserves the right to employ the services of a testing agency ("Owner’s Testing Agency"). Owner’s Testing Agency shall perform tests as mandated by the Owner and the Contract Documents. For testing identified in the Contract Documents, the Contractor is responsible for notifying Owner’s Testing Agency 24 hours in advance of time and date testing is required. If the CM/GC requests the Owner’s Testing Agency on site and is not ready for the Owner’s Testing Agency’s services, the Contractor shall reimburse the Owner for the Owner’s Testing Agency’s complete cost for the site trip including mileage, travel time, and time spent on site waiting for the Contractor to be ready for the Owner’s Testing Agency’s services. The Contractor shall reimburse the Owner for any re-test due to failure of initial testing.
1. GENERAL
 A. The requirement for a temporary construction trailer varies. Refer to the UGA Special Conditions specific to the project.
1. GENERAL
 A. The Contractor shall provide from the beginning of work washing and temporary enclosed toilet facilities for use of workers on the job. Such facilities shall be maintained in a clean and sanitary condition meeting all local and state health standards throughout their use. The Contractor shall not permit any sanitary nuisance in or about the work. Toilet facilities for the Contractor’s workers shall be provided by the Contractor at as part of the Contractor Overhead Cost or Base Bid. University toilet facilities shall NOT be made available to the Contractor's workforce.
1. GENERAL
 A. This work is being performed on the Owner’s property and parking is restricted and regulated. Contractor and workers shall park only in areas designated by the Owner. The Contractor is required to purchase “Contractor Parking Permits” from University of Georgia Parking Services (706-542-PARK). Contractor shall include the cost of parking permits in the Contractor Overhead Cost or Base Bid. Any costs associated with parking permits shall be included in the Cost of the Work by each subcontractor as applicable. Designated ‘laydown’ area taken from an existing permitted parking area shall not be used as a ‘free parking’ area. The University of Georgia Parking Services may require the purchase of parking permits for parking spaces within the project construction fence if an existing permitted parking lot has been fenced. Parking spaces directly adjacent to the project site are not guaranteed. It is the responsibility of the Contractor to coordinate parking availability outside of the project fence with University of Georgia Parking Services. The Contractor is responsible for paying for all fines related to parking violations at Contractor sole cost and the Contractor shall not be allowed to pay for fines from the Contractor Contingency or as part of the Cost of the Work or as a Change Order.
1. GENERAL

 A. The Contractor shall coordinate and use only the area(s) designated by the Owner for job site office, storage of materials and equipment, parking and staging operations. These areas and grounds shall be left clean and shall be restored to the same condition as when accepted by the Contractor. Construction and staging are limited to the designated areas.
1. GENERAL
 A. Related sections:
 i. 32 01 90.23 – Pruning
 ii. 32 90 00 – Planting
 iii. 32 91 00 – Planting Preparation
 iv. 32 91 13.16 – Mulching
 v. 32 92 00 – Turf and Grasses
 vi. 32 93 00 – Plants
 vii. 32 94 13 – Landscape Edging
 B. Scope
 i. All existing trees and shrubs in or near an area to be planted shall be protected from soil compaction, equipment damage and stock piling of materials such as sand, gravel and topsoil. This includes any adjoining areas in which planting materials or equipment (including vehicles) will be stored. In order to prevent damage to trees and tree root systems, protective barriers shall be installed before bed preparation.
 ii. The tree canopy/tree root zones of trees designated to be preserved shall be protected during the entire construction process.
 iii. Tree trunks and branches shall not be damaged by equipment or workers. Tree roots shall be protected from soil compaction, damage by trenching or excessive grade changes, and hazardous materials or waste products.
 iv. Any anticipated or required pruning shall be performed by the UGA Grounds Department.
 v. A Tree and Plant Protection Map, shall be prepared by the design professional, which identifies all areas affected by the project. The Tree and Plant Protection Map must show the location, species and size of all existing trees and landscape that may be negatively impacted by the project. The map must indicate which trees and shrubs are to be removed, and which ones are to remain. The plan shall include protection measures for all tree and landscape impacts, including all utility connections for the project or new facility.
 C. Tree Canopy/Tree Root Protection Zones
 i. Prior to the start of any site work the Contractor will erect fencing around trees which are to be preserved and sensitive root zones which are to be protected within the construction site.
 ii. The Contractor shall meet with the UGA Grounds Department representative and Project Manager prior to beginning any site work to review and verify all Work procedures, trailer location, stockpile and staging areas, access and haul routes, and equipment operation methods with respect to the required tree canopy/tree root protection measures.
 iii. Trees indicated on the plan to remain shall be protected from injury to their branches, trunks, and root zones during the entire construction period. Protection of tree canopy/tree root zones shall be by the placement of temporary fencing as outlined.
iv. No removal or encroachment into tree protection enclosures shall be permitted unless coordinated with the Project Manager.

v. The Contractor shall be responsible for installation and maintenance of all tree protection fencing. Protective fencing shall remain undisturbed until all site work has been completed. The Contractor shall remove fencing at completion of project.

vi. If protective fencing is damaged, the Contractor shall immediately execute the necessary repairs to re-establish the protective fencing to the original configurations.

vii. The Contractor shall be held liable for any damages to protected trees and root zones caused by unauthorized intrusions into the protected areas during construction activity.

viii. Any pruning of protected trees that may be required during the course of construction shall be performed by the UGA Grounds Department. Coordinate pruning requests with the Project Manager.

ix. Erosion control devices shall be installed as per contract drawings with particular emphasis on preventing siltation and/or erosion from occurring within the tree root protection zone.

D. Tree Canopy and Tree Root Zones Allowed Disturbance

i. In situations where the Design Professional has received written approval from the Project Manager to allow work that will compromise tree root zones, the Contractor will be responsible for the follow up and shall be included in the Cost of Work or Bid:
 a. Watering affected tree as prescribed by the Design Professional or UGA Grounds Department.
 b. Air spading by certified arborist.

2. PRODUCTS

A. Protective Fencing

i. Protective fencing shall be 6’ high chain link fencing. Support posts for chain link fencing shall be metal posts with a minimum of 2” diameter and full height of fencing. Use 9 gauge top and bottom wires between posts to support chain link fencing. Attach fencing to posts and top and bottom wires with 9 gauge wire ties.

B. Geotextile Fabric

i. Filter fabric shall meet the requirements for GADOT Type 3 engineering fabric, Class A.

C. Mulch

i. Coarse chipped or ground wood mulch shall be approved prior to application by the Project Manager.

3. EXECUTION

A. General

i. The Contractor shall locate utilities prior to installing chain link fence support posts into the ground.

ii. Trees to be removed that have branches extending into the canopy of trees to be preserved shall be removed by a certified arborist and not by the Contractor or a demolition sub-contractor. The certified arborist shall remove
the tree in a manner that causes no damage to the protected trees and landscape to remain after construction is completed.

iii. Trees to be removed shall be felled so as to fall away from protective zones and to avoid pulling and breaking of tree roots indicated on the plan to remain.

iv. Any brush clearing required within or around the tree canopy protection zone shall be accomplished with hand operated equipment.

v. The Contractor shall be held liable for damages incurred to any tree branches that extend over protective fencing and to any trees or other plant material located on the site and indicated on the plan to remain. The Contractor shall notify the Project Manager when any overhanging branches or other plant material is interfering with or risks damage due to construction activity.

vi. If work causes an existing tree to be removed that is not shown on plans as planned demolition, the UGA Grounds Department shall be consulted with to evaluate and determine future viability of the existing tree(s) located within the area(s) of proposed construction excavation.

vii. Final evaluations shall be coordinated with the Project Manager to determine if tree should remain, be relocated, or be removed if unable to survive encroachment of new revised design and construction.

B. Scope of Work Within or Around Tree Root Protection Zone

i. Any grading, construction, demolition, remedial measures or other work that is expected to encounter tree roots shall be made in consultation with the Project Manager.

ii. No machine digging shall take place within a radius of one and one-half foot for each 1 inch diameter at breast height (DBH) of the tree. DBH is defined as the diameter of the trunk measured at 54 inches above grade.

iii. Any roots 2 inches in diameter or less that sustain damage during construction shall be exposed to sound tissue and cleanly pruned close to the tree side of the trench. Clean cuts shall be made at all times.

iv. For construction projects requiring access or haul roads that must pass over the root area of trees to be retained, a roadbed shall be installed using 4 inches (minimum) of mulch or wood chips covered with approved logging mats. Approval shall be given by the Project Manager. The roadbed shall be replenished and maintained as necessary to provide desired root zone protection. For projects requiring materials storage within the root area of trees to be retained or protected, this area shall be constructed using an approved geotextile base covered with 4 inches (minimum) of coarse wood mulch or chips. The area shall be replenished as necessary to maintain a 4 inch (minimum) depth.

v. No material shall be stored or piled within a radius of 2 feet for each 1 inch DBH (minimum) of the designated tree root zone or as directed by the Project Manager. No gasoline, fuel oil, harmful chemicals, etc., or other deleterious materials shall be stored, spilled or deposited on the ground with in this limit.

vi. There shall be no vehicular traffic or parking permitted under the drip line/canopy of any tree to be retained or protected within the construction site unless approved tree root protection measures have been installed.
vii. Foot traffic shall be kept to a minimum under the drip line/canopy. If temporary foot traffic must be directed over the root zone of trees to be retained or protected, a pathway shall be installed using an approved geotextile base covered with 3 inches (minimum) or mulch or wood chips. The pathway material shall be replenished as necessary to maintain a 3 inch (minimum) depth.

viii. Installation of curbs and sidewalks shall be completed in a manner least damaging to trees and tree root systems. An approved geotextile fabric shall be considered a viable alternative to the specified sub-base in sensitive root zones. When unique site conditions not addressed in the contract drawings result in the opportunity for an alternative solution or a potential modification to the plan, the Contractor may present a proposal to the Project Manager.

ix. For an existing landscape with an irrigation system that requires protection, the Contractor shall either maintain operation of the irrigation system at all times or hand water at rate and schedule approved by the Project Manager.

C. Liability and Fines
 i. The Contractor shall be held liable for any damage to protected trees. A dollar value shall be determined by following criteria contained in A Guide for Plant Appraisal. (Council of Tree and Landscape Appraisal, Latest Edition).

 ii. The Contractor shall be fined $500 per day for each day that the Owner and /or Design Professional photographically documents violation(s) of the requirements within this section. Payment of the fine will be received by the Owner through a unilateral deductive change order to the Contractor’s Contract.

 iii. The Contractor shall be held liable for all remedial measures required to treat broken limbs, or damaged trees and roots, or for unauthorized removal of existing trees or plant material, etc. All tree surgery and remedial treatments will be accomplished by a certified arborist.

 iv. Contractor will protect all trees, shrubs and grass in the project site that will not be removed as part of the scope of Work. Any damages to these live plants will be repaired or replaced by the Contractor at the Contractor’s sole cost before final payment will be issued by the Owner.
01 58 13
TEMPORARY PROJECT SIGNAGE

1. GENERAL
 A. The Contractor shall install an official Project Construction Sign at a location agreed upon with the Owner. The sign shall be installed prior to beginning construction on site. The cost shall be included in the Contractor Overhead Cost or Base Bid. The sign shall be a 4’x8’ sheet of plywood with black lettering and white background. The Owner may elect to include a full color rendering of the project and will provide the approved artwork to the Contractor. The Contractor shall provide a proof to the Owner for review and approval prior to fabrication. The official Project Construction Sign shall include the following information:

 THE UNIVERSITY OF GEORGIA
 The Board of Regents of the University System of Georgia
 Project Name
 (Project Number if it has a BOR number)
 Name of Contractor
 Name of Design Professional
 Administered by the Office of University Architects for Facilities Planning

 B. The Contractor may provide and install signage as required to direct deliveries. No additional Contractor, subcontractors or supplier signs may be installed on site without prior authorization. It is the intent of the Owner to not allow signs that advertise for the Contractor, design professional, subcontractors, or suppliers.
1. **GENERAL**

 A. Under no circumstances shall any asbestos, formaldehyde or lead containing material be installed under this Contract. New materials shall not contain asbestos, formaldehyde or lead in any form or quantity (i.e. zero asbestos, formaldehyde or lead). Manufacturers shall submit certification to the Owner of zero-asbestos, formaldehyde or lead for all materials used on this project prior to request for final payment.
01 65 00
PRODUCT DELIVERY REQUIREMENTS

1. GENERAL
 A. The Owner can NOT accept delivery of any materials. Contractor shall unload his equipment and materials and move them to the site of the Work.
1. GENERAL
 A. The University of Georgia has implemented strict recycling and waste management policies for all waste materials removed from its campus as a result of construction and demolition activity. These materials include:
 i. Asphalt
 ii. Concrete, concrete block, concrete masonry units (CMU), slump stone (decorative concrete block), and rocks
 iii. Brick
 iv. Paper, including bond, newsprint, cardboard, mixed paper, packing materials, and packaging
 v. Cement Fiber Products, including shingles, panels, siding
 vi. Paint
 vii. Glass
 viii. Plastics
 ix. Carpet and Pad
 x. Beverage Containers
 xi. Gypsum Wallboard
 xii. Ceiling Tiles
 xiii. Porcelain Plumbing Fixtures
 xiv. Fluorescent Light Tubes, per EPA regulations
 xv. Green materials (i.e. tree trimmings and land clearing debris)
 xvi. Metals (ferrous and non-ferrous) including, but not limited to, stud trim, ductwork, piping, reinforcing steel (rebar), roofing, other trim, steel, iron, galvanized sheet steel, stainless steel, aluminum, copper, zinc, lead, brass, and bronze.
 xvii. Wood (non-pressure/chemically treated wood) including, clean dimensional wood, pallet wood, plywood, oriented strand board (OSB), particle board.
 xviii. Vinyl composition tile (VCT)

 B. The Contractor is required to account for all waste materials removed from the project, and to recycle, salvage, or reuse, to the maximum practicable extent, all of the materials listed above within 20 miles of the construction site. Upon request, Owner’s Representative will provide assistance to the Contractor in identifying markets for recyclable materials. The Contractor shall make provision as practical for the Owner’s Representative to utilize any recycled materials and processed waste materials on campus. If the Contractor believes that recycling, salvage, or reuse of any of these materials is impracticable, the Contractor must inform Owner before commencement of construction, and secure Owner’s written authorization for an alternative means of disposal.

 C. The Contractor will be required to supply to the Owner on or before the Pre-Construction Meeting a Waste Management Plan which documents procedures to recycle, salvage, or reuse the materials listed above, including 1) separation, hauling and recycling procedures, 2) material recovery facilities and their distance from job site; and 3) markets for each material recovered. This plan must also address training and communications, recordkeeping, and reporting requirements to assure that all waste
materials are accounted for properly. At the Material Completion, the Plan shall be updated and submitted to the Owner’ Representative with the total quantities of each waste material that was reused, salvaged, recycled, or disposed of, and the markets to which these materials were directed, so that it provides documentation in a single source of waste management performance on the project.

D. During construction, the Contractor shall maintain records of a) each type of material removed from the job site (including materials that are not recycled), b) the name(s) of specific end destinations for all materials removed (whether recycled or disposed of), and c) weights or measures of all types of materials removed. Every load of waste material that leaves the site must be documented (including receipts, pictures or tickets from material hauler or recovery facility) and reported to Owner’s Representative on a monthly basis.

E. The Owner retains the right to inspect, and subsequently approve or disapprove any and all recycling end markets, reuse or salvage outlets, and/or waste disposal facilities that are involved in the receipt of recyclables and/or waste materials generated from the project. Disapproval of such a market or outlet may be based on past or current violations of federal or state environmental, health, or safety laws, improper disposal activities, risk or liability exposure, excessive distance from the job site, or any other reason deemed sufficient by Owner.

F. The Contractor shall include administrative and recordkeeping costs associated with Construction and Water Management in the Contractor Overhead Cost and Base Bid. All other associated costs shall be included in the Cost of the Work as part of the Guaranteed Maximum Price.
1. **GENERAL**

 A. Related sections:

 i. 01 78 00 – Closeout Submittals
 ii. 23 25 00 – HVAC Water Treatment

 B. All documentation required in this section shall also be provided in the closeout submittal.

 C. The closeout manual shall include factory or authorized agent completed and signed start-up certification documentation.

 D. Chillers, condensing units, cooling towers, boilers, pumps, VSDs, AHUs, humidifiers, heat exchangers and water heaters, PRVs, controllers and controlled elements, meters, pre-insulated underground piping, etc., shall be field inspected and tested by the manufacturer or a factory trained authorized representative for installation in compliance with the manufacturer’s installation instructions and recommendations prior to start-up. The manufacturer or a factory trained authorized representative shall perform, or be present at, the start-up. Start-up documentation certifying proper installation and start-up shall be promptly forwarded to the Design Professional and Project Manager after successful start-up.

 E. Condenser, chilled water and heating hot water systems shall not be started until cleaning, flushing and pre-treatment has been done to the satisfaction of the water treatment contractor.

 F. Heating hot water systems shall be cycled through heat up and cool down and checked for leaks prior to handover. Inspection for leaks shall be performed by the TAB agency at the seasonal TAB.

 G. Base mounted pumps shall be properly grouted and aligned by, or to the written approval, of a factory certified representative. Contractor shall submit written certification to this effect.
1. **GENERAL**

 A. Related sections:
 i. 00 73 00.01 – UGA Special Conditions
 ii. 01 31 00.02 – Design Professional Documentation Requirements & Deliverables
 iii. 01 33 00 – Submittal Procedures
 iv. 01 75 00 – Starting and Adjusting
 v. 09 00 00 – General Finishes Requirements

 B. Included in this section is the sample Contractor & Project Manager Project Close-Out Checklist to be used as a reference for closing out the Project.

 C. At the close of the Project, for a Project not utilizing BIM, the Design Professional shall provide the Project Manager 3 sets of electronic files for both the drawings and specifications that incorporate all change orders and request for information.

 D. At the close of the Project, for a Project that utilized BIM, the Design Professional shall provide to the Project Manager 3 sets of electronic files for both the drawings and specification electronic that incorporate all change orders and request for information. The Design Professional and Contractor (if applicable) shall provide additional electronic files in formats as agreed upon in the BIM Execution Plan.

 E. Electronic Deliverables:
 i. Electronic file names shall be no longer than 15 characters using only Microsoft acceptable file names and shall be delivered by CD-Rom(s), flash drive, file download, or other acceptable deliverable.
 ii. For projects that do not require BIM, AutoCAD files shall be version 2007 or later and be whole and complete with NO Xrefs to symbols or other drawings.
 iii. All drawings and specifications shall be submitted in AutoCAD (.dwg), Revit (.rvt) (depending on if BIM is utilized), Microsoft Word (.doc), and Adobe PDF (.pdf) formats. All PDF files shall be searchable.
 iv. Drawings and specifications shall each be submitted as one PDF binder set and as separate files for each drawing sheet/specification section.

 F. For Closeout Submittals, both the hardcopies and electronic copies shall be organized using the Construction Specifications Institute (CSI) numbering system utilized in the project manual.

 G. O&M Manuals shall include (as applicable to the Project):
 i. Contact List
 ii. Emergency Shut off Plan
 iii. Finish Schedule
 iv. Lamp Schedule
 v. Schedule of all mesh size for all strainers used.
 vi. Factory or authorized agent completed and signed start-up certification documentation for...
 vii. As required by 14 20 00 Elevators
 viii.

H. The Contractor shall forward 1 set of closeout submittals to the Design Professional and Project Manager for review. If there is a Commissioning Agent related to the Project, the CxA shall simultaneously be issued a copy for review.

I. The comments generated by the Design Professional, Project Manager, and CxA (if applicable) shall be collected by the Design Professional and consolidated prior to returning to the Contractor for any required revisions.

J. Once the Contractor has addressed any closeout submittal comments, the Contractor shall make the electronic versions and prepare final copies per the Closeout Deliverables table in this section.

K. The Contractor shall provide to the Project Manager for a OUA Project:
 i. Contractor As-Built Construction Documents: 2 Full Size Printed Sets, 1 Half Size Set; 3 electronic files
 ii. Contractor As-Built Project Manual: 2 hard copies, 3 electronic files
 iii. Shop Drawings and Submittals: 1 hard copy; 3 electronic files
 iv. Operations and Maintenance Manuals: 1 hard copy; 3 sets electronic files
 v. Test & Balance Report: 1 hard copy, 3 sets electronic files
 vi. Contractor Training Videos: 3 sets electronic files
 vii. Drawings, specifications, submittals, equipment list, specifically related to data/telecommunications: 1 hard copy; 1 set electronic files
 viii. Drawings, specifications, submittals, equipment list, programming files, specifically related to audio-visual: 1 hard copy; 1 set electronic files

L. The Contractor shall provide to the Project Manager for a FMD Project:
 i. Contractor As-Built Construction Documents: 1 Full Size Printed Sets; 2 electronic files
 ii. Contractor As-Built Project Manual: 1 hard copies, 1 electronic files
 iii. Shop Drawings and Submittals: 1 hard copy; 1 electronic files
 iv. Operations and Maintenance Manuals: 1 hard copy; 1 sets electronic files
 v. Test & Balance Report: 1 hard copy, 1 sets electronic files
 vi. Contractor Training Videos: 1 sets electronic files
 vii. Drawings, specifications, submittals, equipment list, specifically related to data/telecommunications: 1 hard copy; 1 set electronic files
 viii. Drawings, specifications, submittals, equipment list, programming files, specifically related to audio-visual: 1 hard copy; 1 set electronic files
Contractor & Project Manager Project Close-Out Checklist

<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
<th>Scheduled Completion</th>
<th>Actual Completion</th>
<th>Copy in Closeout</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Obtain Certificate of Material Completion</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>Identify Start of Warranty Date</td>
<td></td>
<td>Date:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Verify Final Cleaning Satisfactory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Obtain Operation & Maintenance Manuals (two weeks prior to date of training session)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Obtain Certificate of Final Completion</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>6</td>
<td>Obtain Certificate of Occupancy from Fire Marshal</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>7</td>
<td>Obtain Attic Stock</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>8</td>
<td>Transfer of Utilities to UGA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electrical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Transfer Insurance to UGA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Sign off on Punch list Completion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Establish Warranty Documentation Log/Procedure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Sign Roof/Wall Bond</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Obtain Keys/Key Cards</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Identify Maintenance Agreements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Acceptance of Final Test & Balance Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Acceptance of Final Commissioning Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Obtain As-built Documents;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hard Copies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Obtain Special Inspection Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NPDES: Obtain Notice of Termination (NOT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Training Complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Obtain Training Videos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Hold Close-out Meeting OUA/PPD for Transfer of Information/Documents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Write Lessons Learned Memo and Modify Procedures Manual Accordingly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. **GENERAL**

 A. UGA storing less attic stock.

 B. Design Professionals shall coordinate with the Project Manager on attic stock.

 C. For new and large facilities, Contractor to assist with locating attic stock material in specified room and building.

 D. Contractor shall label all attic stock with same nomenclature as in contract documents.
1. GENERAL
 A. Related Sections:
 i. 01 31 00.02 – Design Professional Documentation Requirements & Deliverables
 B. Introduction: The UGA requires and has been implementing efficient and sustainable designs for new construction and renovations for many years. Regardless of whether a project will utilize a third party green building certification system, the Design Professional shall present multiple scenarios with various levels of energy and water conservation options for the Project Manager’s review.
 C. The design and construction of a new building shall be for at least a fifty year life with emphasis on minimum life cycle costs rather than low first costs.
 D. Energy Performance:
 i. The mechanical, electrical, and plumbing energy related design for all buildings shall comply with ASHRAE Standard 90.1 – 2010.
 a. Design Professional shall be held accountable for meeting the percentage energy savings.
 ii. Computerized energy budget analysis, forecasting consumption in BTU/GSF/Year is mandatory for all new construction projects over 10,000 square feet that have heating and cooling.
 iii. Computerized energy budget analysis, forecasting consumption in BTU/GSF/Year is mandatory for all renovation projects that renovate an entire building (not a portion of a building).
 iv. Life cycle cost comparisons with return on investment calculations of different proposed mechanical systems shall be presented at the end of schematic design.
 a. Design Professional shall develop narrative of each system with diagrams of major equipment locations and review with Project Manager prior to coordinating costing information.
 b. Design Professional shall not proceed with further development of mechanical systems until Project Manager has provided written approval of which system to incorporate into the project.
 E. Water Conservation
 i. For new construction, the project shall conserve 20% more water, not including irrigation, than the code requirement for the state of Georgia.
 F. Storm Water and Condensate
 i. Options for collection and reuse of storm water and condensate are required for all new construction projects with special attention given to uses other than irrigation.
 G. For UGA Athens Campus only: Use the following outdoor design conditions:
 i. Winter, design dry bulb 10 °F
 ii. Summer, design - cooling 95 °F DB / 76 °F MCWB
 iii. Summer, design - evaporation 78 °F WB / 89 °F MCDB
 iv. Summer, design - dehumidification 75 °F DP / 135.3 HR / 82.3 MCDB
 v. Degree days heating 2,900 (base 65 °F)
 vi. Degree days cooling 1,700 (base 65 °F)
vii. Climate zone

Zone 3A

H. Comfort Conditions:

i. Indoor design conditions shall suit the process and user requirements.

ii. For comfort conditions use 74 °F DB in summer and 70 °F DB in winter.

iii. Cooling equipment shall be selected to achieve 50% RH at design cooling conditions and maximum space humidity shall not exceed 60% RH. Positive dehumidification control may be required for high outdoor air supply applications and/or specific process needs. The Design Professional shall determine and confirm in writing all indoor design conditions during schematic design.
1. **GENERAL**

 A. **Protection**

 i. All existing hardscape and landscape to include but not limited to buildings, curb & gutter, stairs, sidewalks, retaining walls, bus shelter, roadway, parking lot, trees and shrubbery not noted for demolition or improvements shall be protected during the work to prevent damage and staining.

 B. **Repair**

 i. All damaged and/or stained work, as described above, shall be repaired by the Contractor at his own expense. In the event the Owner of said structure or utility elects to make necessary repairs with his own workforce, the Contractor shall reimburse the Owner for the cost of repairs. Contractor shall repair or replace damage as required to return it to its original state before final payment shall be issued by the Owner.
1. GENERAL

A. The Contractor shall document with photographs and/or video all existing conditions of the jobsite and submit a copy to the Owner’s Representative prior to commencing work. This documentation will form the basis of the existing conditions and the Contractor will be responsible, at Contractor cost, for repair of any and or all new damages discovered within the jobsite. Any costs associated with this documentation shall be included in the Contractor Overhead Cost or Base Bid.

B. The Contractor shall, at the start of the work, identify and check the condition and operation of all existing valves, circuit breakers and disconnects serving the new work that are to be reused for proper shut-off and isolation of the service. Any problems found shall be brought to Project Manager’s attention for remedy.
1. **GENERAL**

 A. All existing services and equipment that were active at the beginning of the project and that will no longer be in service at the end of the project shall be removed from the project and not be abandoned in place.
1. GENERAL
 A. Related Sections:
 i. 32 16 23 - Sidewalks
 B. Vandalism: The Contractor is responsible for assuring that all exposed concrete surfaces are not vandalized prior to the concrete initial setting. If refinishing or replacement is required due to vandalism during the initial setting the Contractor shall replace the concrete at no cost to the Owner.
 C. Rinsing out of transit mix trucks, washing or wetting of concrete, site cleanup, or other activity related to water at the site shall be strict conformance with the Clean Water Act, Georgia Water Quality Control Act, and Georgia Soil Erosion and Sedimentation Act.
 D. Rinsing of transit mix trucks or other concrete mixing devices shall either be off of the project site or onsite in a contained area, which does not allow run-off. If rinsed in a contained area onsite, run-off must be prevented until concrete dries, at which time it must be removed as solid debris.
 E. Fly ash shall not be used in architecturally exposed concrete.
04 00 00
GENERAL MASONRY REQUIREMENTS

1. GENERAL
 A. Related Sections:
 i. 32 32 53 – Stone Retaining Walls
 B. Any type of exterior masonry sealer, water repellant, or waterproofing coating is not allowed.
1. **GENERAL**
 A. Related sections:
 i. University of Georgia Planning Principles – Site Campus Planning Principles – Paving – Stairs and Handrails
 B. Exterior free standing handrails at concrete steps shall be mounted on stair treads inside the concrete cheek walls.

2. **PRODUCTS**
 A. Refer to diagram at end of section.
 B. All handrails should be constructed of steel.
 C. Galvanizing: In order to prevent rust at the bottom of the newel posts and newel post collars, all newel posts and newel post collars shall be galvanized inside and out. During the galvanizing, the quenching process shall be omitted. The steel to be galvanized should be properly prepared by the steel fabricator to receive a primer coat of paint. It is the Contractor’s option to galvanize just the components in their entirety that will come into contact with the ground or concrete or to galvanize the entire handrail / guardrail assembly.
 D. Exterior free standing handrail
 i. Steel handrail and channel shall be equal to Julius Blum “Steel Handrail and Steel Channel” – Part Number: 4429.
 ii. Steel handrail “Lamb’s Tongue” terminal shall be equal to Julius Blum “Lamb’s Tongue” – Part Number: 4429S. Locate end posts top and bottom to allow lamb’s tongue to return to post.
 iii. Steel newel posts shall be 1 ½” square.
 iv. Steel newel post collar shall be 1 ½” x 1 ½” inside dimension.
 v. Steel vertical pickets, if required by code, shall be ¾” x ¾” and equally spaced with maximum clear dimension between vertical pickets per code. Bottom steel channel shall be minimum ½” thick x 1 ½” wide.
 E. Exterior guardrail
 i. Exterior guardrail with pickets shall be comprised of the same products and sizes listed for ‘Exterior free standing handrail.’
 F. Exterior wall mounted handrail
 i. Steel handrail and channel shall be equal to Julius Blum “Steel Handrail and Steel Channel” – Part Number: 4429.

3. **EXECUTION**
 A. Weld all joints and connections, channels, terminals, and posts (continuous), grindwelds smooth prior to priming and painting.
 B. All handrail material to be primed after all field modifications prior to applying paint. All material to receive (2) coats black exterior enamel after installation. Protect all surfaces not receiving paint or primer.
 C. Maintain positive drainage away from the bottom of the newel post.
1. GENERAL
 A. Related sections:
 i. 01 35 46 – Indoor Air Quality – During Construction
 ii. 06 61 16 – Solid Surfacing Fabrications
 iii. 12 00 00 – General Furnishings Requirements
 iv. 12 36 00 - Countertops
 B. Composite and wood agrifiber products include, but are not limited to, particleboard, medium density fiber board (MDF), plywood, wheatboard, door cores, panel substrates, strawboard.

2. PRODUCTS
 A. Low volatile organic compound (VOC) materials shall be used within the interior weatherproofing of the facility; zero when available. Refer to section 01 35 46 – Indoor Air Quality – During Construction.
1. **GENERAL**
 A. Related sections:
 i. 01 35 46 – Indoor Air Quality – During Construction
 ii. 12 00 00 – General Furnishings Requirements
 iii. 12 36 00 -- Countertops

2. **PRODUCTS**
 A. Low volatile organic compound (VOC) materials shall be used within the interior weatherproofing of the facility; zero when available. Refer to section 01 35 46 – Indoor Air Quality – During Construction.
 B. **For UGA Housing only (New Construction):**
 i. Synthetic solid surfacing for:
 a. Open toiletry shelving
 b. Window sills
 c. Shower corner caddy
 d. Shower wall panels
 e. Shower pans
 ii. Synthetic solid surfacing material shall be solid acrylic or polyester and acrylic resin based solid, structural surfacing material:
 a. Material shall be through-patterned and homogeneous. No coated materials or non-homogeneous materials allowed.
 b. Materials shall be 100% repairable.
 iii. Synthetic solid surfacing material shall be matte finish
 iv. Thickness
 a. Window sills: 3/4"
 b. Shower wall panels: 1/4"
 c. Shower caddies: 1/2"
 d. Shower pans: 1”
 e. Shower corner trim: 3/8"
 v. Shower pans:
 a. Shower pan shall be made from solid cast polyester/acrylic blend resin or 100% acrylic and have adjustable drain locations, coved side walls, with a minimum 1” panel platform with a degree slope and 1’-0” minimum water dam. It shall have a non-skid floor with water channels directing water to the drain at a 2-degree slope (1/4” per foot).
 b. Pans shall carry a 10-year materials and workmanship warranty against cracks, breakage, and leaks.
 c. Shower pans shall meet the minimum ANSI Z124.2 certification.
 d. Shower pans shall have a non-slip coefficient of friction rating of 0.20 or greater as registered by the ASTM F462 slip resistance test method.
 vi. Shower walls:
 a. Adhered, over waterproofing system over cementitious backer board
 b. Install shower wall panels with adhesive as recommended by manufacturer. Seal joints using manufacturer’s recommended mildew-resistant silicone sealant
1. **GENERAL**

 A. Related sections:

 i. 07 00 00 – General Thermal Moisture Protection Requirements – Roof Drains and Roofs
 ii. 07 31 13 – Asphalt Shingles
 iii. 07 41 10 – Cooper & Zinc Sheet Metal Roofing
 iv. 07 41 20 – Steel Standing Seam Metal Roofing
 v. 07 52 13.11 – Cold Adhesive Applied Atactic-Polypropylene (APP) Modified Bituminous Membrane Roofing
 vi. 07 54 23 – Thermoplastic Polyolefin Roofing
 vii. 07 62 00 – Sheet Metal Flashing
 viii. 07 71 23.13 – Gutter Debris Guards
 ix. 07 84 00 – Fire Stopping

 B. Roofing

 i. Design Approach

 a. For new construction, flat and low slope roofs are not allowed to be the primary roof form for both aesthetic and performance reasons.
 b. For new construction the roof slope is 9 in 12 for buildings with the Georgian aesthetic.
 c. For new construction, the design shall minimize the placement of equipment on the roof.
 d. A variance may be requested to allow some low slope roof areas to accommodate mechanical systems. It is not unusual to notch some areas of the sloped roof to provide visual recesses for equipment.
 e. An addition to a building with an existing flat or low slope roof may dictate a design solution with a low slope roof. A variance should be requested for such situations.
 f. For a low slope roof approved through the variance process, a 1/4" per foot is the minimum allowed.
 g. The preferred roof material for most new construction is slate or synthetic slate (non-rusticated thin profile). Due to budget constraints asphalt shingles or metal roofs with at 12" panel width may be considered.
 h. For some historic buildings a standing seam roof may be appropriate. Often these roofs are zinc coated cooper or zinc.

 ii. General

 a. Many existing roofs on campus contain asbestos and the Design Professional and Contractor shall be responsible for removal and disposal per applicable codes and regulations.
 b. Contractor shall protect all roof drainage systems during all roof repairs and all roof work. If these roof drainage systems are not protected, maintained or remain open, the Contractor shall be held liable for all damages in the building and on the roof resulting from this failure to protect. Interior drainage is discouraged, unless existing conditions
necessitate such construction. Access panels shall be provided to all interior drain pipes and cleanouts to allow for inspection and maintenance of interior chases.

c. Roof-mounted equipment such as fume hoods fans, motor starters, etc. shall be installed on fully flashed curbs. When set on stands, allow 18 inches minimum clearance to facilitate repairs to equipment and allow for roof repair and reroofing. Equipment is not allowed to be mounted on pressure-treated wood, plastic pads or panels set directly on roof surface. Curb caps shall not be penetrated by attachment of motors or equipment. Install raised brackets that attach thru the side of curbs and allow equipment attachment without penetrating curb cap.

d. For steep roofs, greater than 5 in 12, include OSHA compliant fall arrest and roof anchor systems.

e. Roofs with parapet walls less than 42 inches in height may require fall arrest anchors. For low slope roofs greater than 3 stories in height, fall restraint anchors shall be installed.

f. Stone precast concrete or metal coping systems require a complete thru wall flashing system. Flash the roof side of parapet walls the full height.

iii. Reroofing

a. Scaled roof plans should indicate, as accurately as possible the locations of existing drains, equipment, vents, hatches, parapets, gutters, scuppers, and other items in fixed locations.

b. The Design Professional shall determine when new emergency drainage is required and shall add overflow scuppers to the design as required.

c. Determine the extent of materials to be removed. If the scope cannot be predetermined, the Design Professional should include provision in contract that will allow on-site evaluation for the extent of Work.

d. Complete removal of the existing roofing system to the surface of the roof deck is required by the Contractor. The Contractor shall take all necessary steps to insure that while removing the existing roof system, that the Contractor does not damage the existing roof deck. The Design Professional shall inspect the roof deck for damage and document the repairs / replacement that will be required for the Contractor to perform.

e. Only when project conditions warrant, identify components (e.g. mechanical equipment) that are required to be removed to facilitate roof repairs and upgrading.

f. Provide a schedule when differing locations require definition as to extent of removal work and identify the subsequent roofing system to be installed.

h. Ascertained that roof repairs and especially those involving new roof penetrations do not void existing roof warranties. The Project Manager will assist the Design Professional in determining who holds the current warranties.

h. Provide the Project Manager with details of boots, sleeves, flashing, counter-flashing, curbs, crickets, etc. compatible with the roofing systems.
i. The preferred method of flashing penetrations through flat roofs involves the construction of a curb around the opening. Small penetrations do not require curbs.

C. Flashing
i. Thru-Wall Flashing: Contractor shall inspect and certify proper installation of all thru-wall flashing. Prior to installation of first piece of thru-wall flashing related to the wall system and prior to the first piece of thru-wall flashing related to the roof system, the Contractor shall coordinate an on-site meeting so that the Project Manager (or another person requested by the Project Manager, for example, the Design Professional) can be on site and witness the installation prior to it being covered up. It is the responsibility of the Contractor to allow time in the schedule for each of these initial inspections. The Contractor shall create and maintain a Thru-Wall Flashing Log listing the date, time, and area inspected and provide copies of the log at each job site meeting. The Contractor shall photo document inspections and each photo shall have a date and time stamp. The Contractor shall provide digital copies of the photos within 24 hours upon the Project Manager’s request. The log and photos shall be part of the close-out documentation.

ii. The reuse of existing counter flashing materials is discouraged. The Design Professional shall specify the installation of new counter flashing in materials matching the existing materials.

2. PRODUCTS
A. Except for Metal Building Systems, galvanized metal may not be included in the roof system. Only 24-gauge minimum before coating products with a Kynar coated finish, copper, or stainless steel are allowed.
1. **GENERAL**
 A. Related sections:
 i. 01 35 13.02 – Special Project Procedures – Roofing & Hot Work
 ii. 07 00 00 – General Thermal Moisture Protection Requirement – Roof Drains and Roofs
 iii. 07 62 00 – Sheet Metal Flashing
 iv. 07 71 23.13 – Gutter Debris Guards
 B. Asphalt shingles shall be “dimensional” or “architectural” type.
 C. Project Manager shall approve color selection.

2. **PRODUCTS**
 A. Acceptable manufacturers are:
 i. Strip Shingle with laminated Tabs: Three-tab type with random laminated tabs and random shadow line.
 a. GAF Timberline 30
 b. Owens Corning Oakridge
 c. Tamko Heritage 30
 B. Roofing Felt Underlayment
 i. Underlayment shall be synthetic mat manufactured from UV stabilized polypropylene rolls 54 inches wide by 222 feet long. Equal to “Deck Armor” as manufactured by GAF Corp.
 C. Penetration Flashing
 i. Vent pipe flashing shall be equal to “Water-Tite Boots” as manufactured by IPS Roofing Products. Base manufactured from plastic, cooper or aluminum multi-sized unit for 1-1/2, 2, 3, and 4-inch pipe.
 ii. Spilt pipe flashing shall be equal to “ASI Retrokit” as supplied by Copperstate Roofing Supply. It shall include galvanized steel base, collar assembly, and clamp.
 D. Mod Bit Underlayment
 i. Self-adhesive membrane manufactured from elastomeric blend of asphalt with polyethylene film intended for use as shingle underlayment. Minimum thickness 40 mils, minimum 36 inch wide rolls. High temperature formulation. Membrane shall be installed at all walls adjacent to roofing and at all penetrations.

3. **EXECUTION**
 A. Warranty
 i. Manufacturer’s 30-year system warranty is required.
07 41 10
COOPER & ZINC SHEET METAL ROOFING

1. GENERAL
 A. Related sections:
 i. 01 35 13.02 – Special Project Procedures – Roofing & Hot Work
 ii. 07 00 00 – General Thermal and Moisture Protection Requirements
 iii. 07 62 00 – Sheet Metal Flashing
 iv. 07 71 23.13 – Gutter Debris Guards

 B. References
 i. Cooper Development Association (CDA) – Contemporary Copper, A Handbook of Sheet Copper Fundamentals, Design, Details and Specifications.

 C. At the UGA Athens, GA campus, sheet metal roofs are most often used on historic buildings.

 D. Qualifications: Fabricators and subcontractors shall be pre-approved and deemed acceptable by virtue of having completed at least three comparable projects in the past three years. Examples of comparables shall be documented and an opportunity for site inspection may be required. Personnel responsible for the work shall be identified and should be associated with the comparable projects documented.

 E. Submittals
 i. Product data including metal manufacturer’s and fabricator’s specifications, installation instructions, and general recommendations for roofing applications. Include certification or other data substantiating that materials comply with requirements.
 ii. Samples:
 a. 6-inch square sample of specified sheet metal roofing materials in thickness indicated.
 b. Waterproofing sheet membrane underlayment.
 iii. Shop drawings showing manner of forming, joining, and securing copper roofing, and pattern of seams. Show expansion joint details and waterproofing connections to adjoining work and at obstructions and penetrations. Indicate types of thicknesses of metal and dimensions. Provide layouts at ¼-inch scale and details at 3-inch scale.
 iv. Mock-up: Before proceeding with final purchase of materials and fabrication of copper roofing components, prepare a mock-up of work. Incorporate materials and methods of fabrication and installation identical with project requirements. Install mock-up at roof area location directed by Design Professional. Retain accepted mock-up as quality standard for acceptance of completed copper roofing. If accepted, mock-up may be incorporated as part of copper roofing work.
 a. Provide mock-up of sufficient size and scope to show typical pattern of seams, fastening details, edge construction, and finish texture and color.

2. PRODUCTS
 A. Copper or Zinc Coated Copper Roofing Sheets
i. Z-T Alloy Coated Copper Sheets: Zinc/Tin coated copper sheet, ASTM B 370; temper H00 (cold-rolled) except where temper 060 is required for forming; thickness as indicated. Provide zinc/tin coating of 0.5 mils thick; both sides of copper sheet. Composition of the alloy shall be approximately 50-percent zinc and 50-percent tin with trace elements controlled for durability, corrosion resistance and color.
 a. Roofing Sheets: Weight: 20 oz. Per sq. ft. unless otherwise indicated.

ii. Product: Freedom Gray, Z-T Alloy Coated Copper, as manufactured by Revere Copper Products, Inc., or approved equal.

B. Zinc Roof Panels
 i. Equal to Rheinzink 24 gauge and the manufacturer’s approved underlayment to control condensation.

C. Shop-Fabricated Units
 i. General Metal Fabrication: Shop-fabricate work to greatest extent possible. Comply with details shown and with applicable requirements of CDA “Copper in Architecture Handbook” and SMACNA “Architectural Sheet Metal Manual” and other recognized industry practices. Fabricate for waterproof and weather-resistant performance with expansion provisions for running work, sufficient to permanently prevent leakage, damage, or deterioration of the work. Form work to fit substrate. Comply with material manufacturer’s instructions and recommendations for forming materials. For exposed copper work without excessive oil-canning, buckling, and too marks, true to line and levels indicate, with exposed edges folded back to form hems.

D. Underlayment
 i. System shall include high temperature self-adhesive modified bitumen underlayment.

3. EXECUTION
 A. Preparation
 i. Coordinate metal roofing with rain drainage work, flashing, trim, roof decking replacement (if applicable), and other adjoining work to provide a permanently leak proof, secure, and noncorrosive installation.

 B. Installation of Metal Roofing
 i. Except as otherwise indicated, comply with manufacturer’s installation instructions and recommendations and with CDA “Copper in Architecture Handbook” and SMACNA “Architectural Sheet Metal Manual.” Anchor units of work securely in place by methods indicated, providing for thermal expansion of metal units; conceal fasteners where possible, and set units true to line and level as indicated. Install work with laps, joints, and seams that will be permanently watertight and weatherproof.

 ii. All seams shall be crimped.

 iii. Construct the hip and ridge cap flashing by hand rolling panels to form watertight joints. Ridge and hip caps are not acceptable.

 C. Warranty
 i. The Manufacturer shall provide a 30 year system warranty.
1. GENERAL
 A. Related sections:
 i. 01 35 13.02 – Special Project Procedures – Roofing & Hot Work
 ii. 07 00 00 – General Thermal and Moisture Protection Requirements
 iii. 07 62 00 – Sheet Metal Flashing
 iv. 07 71 23.13 – Gutter Debris Guards
 B. Qualifications: Fabricators and subcontractors shall be pre-approved and deemed acceptable by virtue of having completed at least three comparable projects in the past three years. Examples of comparables shall be documented and an opportunity for site inspection may be required. Personnel responsible for the work shall be identified and should be associated with the comparable projects documented.
 C. Submittals
 i. Product date including metal manufacturer’s and fabricator’s specifications, installation instructions, and general recommendations for roofing applications. Include certification or other data substantiating that materials comply with requirements.
 ii. Samples:
 a. Square sample of specified metal roofing materials in thickness indicated.
 b. Waterproofing sheet membrane underlayment.
 iii. Shop drawings showing manner of joining and securing roofing, and pattern of seams. Show expansion joint details and waterproofing connections to adjoining work and at obstructions and penetrations. Indicate types of thicknesses of metal and dimensions. Provide layouts at ¼-inch scale and details at 3-inch scale.
 iv. Mock-up: Before proceeding with final purchase of materials and fabrication of roofing components, prepare a mock-up of work. Incorporate materials and methods of fabrication and installation identical with project requirements. Install mock-up at roof area location directed by Design Professional. Retain accepted mock-up as quality standard for acceptance of completed roofing. If accepted, mock-up may be incorporated as part of roofing work.
 a. Provide mock-up of sufficient size and scope to show typical pattern of seams, fastening details, edge construction, and finish texture and color.

2. PRODUCTS
 A. Roof Panels shall be:
 i. Roll formed, 24 gauge galvanized steel (42,000 PSI yield), sheet coated on both sides with 1.25 ounce zinc coating, G-90 conforming to ASTM A525. Mechanically seamed cap strip with factory applied weather stripping.
 ii. Finish: Manufacturer’s standard color kynar 500 fluoropolymer.
 iii. Style: Thin Seam
 a. Width: (see note on standing seam spacing)
 b. Panel depth: 1 ¾”
 c. 2 stiffening flues centered in the flat plan
 iv. Standing Seam Spacing:
a. Standing seam spacing shall be coordinated with the Project Manager to insure proper aesthetic spacing for the building. Standing seams spaced 12” on center or 16” on center are typical spacing dimensions. 18” on center may be considered. 24” on center standing seam spacing is not acceptable.

v. Mounting Clip: Fabricated from 22-guage stainless steel with two fasteners through the 3-inch length.

vi. Panel Length: As field measured to assure no panel end seams.

3. EXECUTION

 A. Preparation
 i. Coordinate metal roofing with rain drainage work, flashing, trim, roof decking replacement (if applicable), and other adjoining work to provide a permanently leak proof, secure, and noncorrosive installation.

 B. Installation of Metal Roofing
 i. Anchor units of work securely in place by methods indicated, providing for thermal expansion of metal units; conceal fasteners where possible, and set units true to line and level as indicated. Install work with laps, joints, and seams that will be permanently watertight and weatherproof.

 C. Warranty
 i. The Manufacturer shall provide a 30 year system warranty.
07 52 13.11
COLD ADHESIVE APPLIED ATACTIC-POLYPROPYLENE (APP) MODIFIED BITUMINOUS MEMBRANE ROOFING

1. **GENERAL**
 A. Related sections:
 i. 01 35 13.02 – Special Project Procedures – Roofing & Hot Work
 ii. 07 00 00 – General Thermal & Moisture Protection Requirements – Roof Drains & Roofs
 iii. 07 71 23.13 – Gutter Debris Guards
 B. Single Source Responsibility:
 i. All components shall be provided by and installed by a single manufacturer.
 ii. Manufacturer approved installer with not less than 10 years of successful experience and installation of materials described in this section.

2. **PRODUCTS**
 A. Roof system to be constructed shall be a two ply modified bitumen using a base ply and a cap ply.
 B. Equal to:
 i. Firestone Building Products Company: APP Premium base ply and APP Premium FR cap ply field of roof and base flashing.
 a. Membrane adhesive: MB cold adhesive.
 b. Flashing adhesive: MB flashing adhesive.
 c. Base sheet: APP 80 glass base cool.
 d. Vapor retarder: V Force (self adhesive) and V Force SB Primer
 e. Primer: 603 SA
 a. Membrane adhesive: MBR cold application adhesive.
 b. Flashing adhesive: MBR utility cement.
 d. Vapor retarder: DynaGrip Base SD/SA (self adhesive)
 e. Primer: ASTM D41.
 iii. Performance Roof Systems, Inc: Derbibase Ultra base ply and Derbicolor GP FR cap ply field of roof and base flashing.
 a. Membrane adhesive: Permastic cold adhesive.
 b. Flashing adhesive: Perflash cold mastic.
 d. Vapor retarder: PRS SA base (self adhesive)
 e. Primer: ASTM D41
 C. Insulation shall be supplied by the membrane manufacturer and included in the required 20-year system warranty.

3. **EXECUTION**
 A. The roof manufacturer shall provide a 20-year system warranty.
 B. Provide tapered installation with positive slope to drain.
 C. Standing water shall evaporate within 48 hours after each rain event.
1. **GENERAL**
 A. Related sections:
 i. 01 35 13.02 – Special Project Procedures – Roofing & Hot Work
 ii. 07 00 00 – General Thermal & Moisture Protection Requirements – Roof Drains & Roofs
 iii. 07 71 23.13 – Gutter Debris Guards
 B. This system is typically used for reroofing of existing roofs, not for new construction.

2. **PRODUCTS**
 A. TPO single-ply roof system shall be a white color minimum of 60 mil thickness.
 B. Equal to:
 i. Carlisle Syntec “Sureweld”
 ii. Firestone Building Products “TPO”
 iii. Johns Manville “TPO”
 C. Insulation shall be supplied by the membrane manufacturer and included in the required 20-year system warranty.

3. **EXECUTION**
 A. The Contractor shall provide a 20-year system warranty.
1. **GENERAL**
 A. **Related sections:**
 i. 01 35 13.02 – Special Project Procedures – Roofing & Hot Work
 ii. 07 00 00 – General Thermal and Moisture Protection Requirements
 iii. 07 71 23.13 – Gutter Debris Guards
 B. **Summary**
 i. Gutters, leaders, conductor heads, and associated accessories.
 C. **References**
 i. Copper Development Association (CDA) – Contemporary Copper, A Handbook of Sheet Copper Fundamentals, Design, Details and Specifications.
 D. At the UGA Athens, GA campus, the majority of new construction utilizes copper gutters, leaders, and conductor heads. Aluminum systems may be considered on a project specific basis and approved through the variance process.
 E. **Qualifications:** Fabricators and subcontractors shall be pre-approved and deemed acceptable by virtue of having completed at least three comparable projects in the past three years. Examples of comparables shall be documented and an opportunity for site inspection may be required. Personnel responsible for the work shall be identified and should be associated with the comparable projects documented.
 F. **Submittals**
 i. Submit manufacturer’s technical information and installation instructions for:
 a. Each specified sheet metal material and fabricated product, indicating that materials meet standards specified herein.
 b. Solder and flux.
 ii. Shop Drawings showing layout, profiles, method of joining, and anchorage details. Show expansion joint details where applicable and waterproof connections to adjoining work. Indicate types and thicknesses of metal and dimensions. Provide layouts at ¼-inch scale and details at 3-inch scale.
 iii. Samples: Each material and profile proposed for use; minimum 12 inches long.
 a. 12-inch long section of gutter.
 b. 12-inch long section of downspout
 c. Gutter strap.
 d. Downspout strap.
 e. Each type of fastener.

2. **PRODUCTS**
 A. **Flashing**
 i. Z-T Alloy Coated Copper Sheets: Zinc/tin coated copper sheet, ASTM B 370; temper H00 (cold-rolled) except where temper 060 is required for the thickness as indicated. Provide zinc/tin coating of 0.5 mils thick, both sides of copper sheet. Composition of the alloy shall be approximately 50-percent durability, corrosion resistance and color.
 a. Counterflashing, Base Flashing and Trim: Weight: 16 oz. Per sq. ft
 B. **Copper Gutter, Downspouts, Outlet Tube, and Conductor Head**
a. Copper sheet: ASTM B370, temper H00 (Cold-rolled) except where temper 060 is required for forming; 16 oz. (0.0216-inch thick) except as otherwise indicated. Basis of design is manufactured by CooperCraft.
 1) Gutter and End Caps: Pre-fabricated, half-round gutters and smooth round downspout and elbow.
 2) Downspout and Outlet Tube: Pre-fabricated, smooth round downspout and elbow.
 3) Downspout Elbow: Pre-fabricated round, crimped elbow.
 4) Conductor Head: Windsor Conductor Head.

b. Size gutter and downspouts to meet requirements of 100 year rainfall events.

C. Miscellaneous Materials and Accessories
 i. Gutter Straps: 1" wide x 1/8" thick copper, equal to CopperCraft.
 ii. Downspout straps shall not be used.
 iii. Downspout brackets shall be used to stand off the downspout to clear the exterior wall by 2".
 iv. Strainers: Wire basket type copper strainer.
 v. Solder: ASTM B 32, and shall be pure tin or lead-free, high tin.
 vi. Flux: Tin bearing flux.
 vii. Sails: Copper or hardware bronze, 0.109 inch minimum not less than 7/8" long barbed with large head.
 viii. Rivets: 1/8"-3/16" diameter, with solid copper mandrels and washers.

D. Fabrication
 i. Fabricate components in accordance with SMACNA Manual and CDA Handbook.
 ii. Pre tin edges of copper sheet.
 iii. Solder shop formed joints. After soldering, remove flux and wash clean.
 iv. Fabricate corners in single units with minimum 18 inch long legs.
 v. Fabricate vertical faces with bottom edge formed outward ¼ inch and hemmed to form drip.
 vi. Provide the thermal expansion and contradiction in sheet metal:
 a. Provide expansion joints in sheet metal exceeding 15 feet in running length.
 b. Place expansion joints at 10 feet on center maximum 2 feet from corners and intersections.
 c. Joint width: Consistent with types and sizes of materials, minimum width ¼”.
 vii. Unless otherwise indicated, provide minimum ¾ inch wide flat lock seams, lap in direction of water flow.

3. EXECUTION
 A. Installation
 i. Install flashings and sheet metal as indicated and in accordance with SMACNA Manual and CDA Handbook.
 ii. Install expansion joints at maximum 40 feet on center.
 iii. Hung Gutter Installation
 a. Hangers shall be of adjustable shank and circle type, secured by brass screws. Hangers shall be spaced not more than 32-inches apart.
b. Outlet Tubes: Connect to outside leader or downspout with locked and soldered longitudinal seam. Upper end of tube shall be flanged ½” to gutter lining. Tube shall extend into leader at least 3”.
1. **GENERAL**

 A. Related sections:
 i. 07 00 00 – General Thermal & Moisture Protection Requirements – Roof Drains & Roofs
 ii. 07 31 13 – Asphalt Shingles
 iii. 07 41 10 – Cooper & Zinc Sheet Metal Roofing
 iv. 07 41 20 – Steel Standing Seam Sheet Metal Roofing
 v. 07 52 13.11 – Cold Adhesive Applied Atactic – Polypropylene (APP) Modified Bituminous Membrane Roofing
 vi. 07 54 23 – Thermoplastic-Polyolefin (TPO) Roofing
 vii. 07 62 00 – Sheet Metal Flashing
 viii. 07 84 00 – Fire Stopping

 B. Gutter Debris Guards shall be included on all gutters for sloped roofs that are located under a canopy of trees or will be susceptible to leaf collection. Coordinate with Project Manager.

2. **PRODUCTS**

 A. Acceptable Debris Guard manufacturers are equal to:
 i. Hallett Gutter Cover

 B. Screws shall be stainless steel or aluminum to attach to the clip.

 C. Colors shall be coordinated with Project Manager.

 D. Debris guard material shall be compatible with gutter material to avoid galvanic corrosion.
07 84 00
FIRE STOPPING

1. GENERAL
 A. Related sections:
 i. 27 00 00 – General Communications Requirements
 B. Contractor shall be required to provide verification of purchase to UGA of product
 provided for fire stopping penetrations through rated partitions.
 C. UGA reserves the right to verify that the correct thickness of material has been provided
 at fire-stopped penetrations by cutting out sections at random at no extra cost to the
 contract.
 D. Fire stop installer shall post labels at all fire stopped penetrations to identify “hour
 rating”, UL System, etc. Submit samples with shop drawing submittals.
 E. The installing contractor shall be trained and authorized by the manufacturer of the fire
 stop product used to do the work; authorization shall be included in product submittals.
 F. The manufacturer’s local representative shall be required to periodically visit the site to
 review the work done and make recommendations to UGA on the work performed. A
 site visit report shall be submitted to the Project Manager.
 G. Floor penetrations in all mechanical spaces shall be sealed and water-proofed. On new
 construction sleeves shall be cast-in-place schedule 40 pipe and shall project 3" above
 the floor in all above grade rooms housing mechanical equipment.
 H. All fire rated penetrations related to communications rooms, telecommunication
 conduit (MDF and IDF) shall be per section 27 00 00 General Communications
 Requirements, 2B.

2. PRODUCTS
 A. Acceptable manufactures are:
 i. Fire Protection Products
 ii. Flame Stop, Inc.
 iii. Hilti Corporation
 iv. Specified Technologies, Inc.
1. GENERAL
2. PRODUCTS
 A. All hollow metal door frames shall have welded joints.
 B. Knock down door frames (factory pre-finished steel door frames which are delivered to the site in pieces for field assembly) are prohibited.
 C. All doors shall be commercial / institutional thickness of 1-3/4”.
 D. For new construction, interior wood doors shall be stain grade and either receives clear coat finish or stain.
 E. For new construction, interior paint grade, painted wood doors shall not be specified.
3. PRODUCTS - For UGA Housing Only (New Construction)
 A. Doors (Per ANSI / Steel Door Institute definitions):
 i. Interior hollow metal doors shall be Level III, 16 ga., Extra Heavy Duty, Model Two seamless, 1-3/4” thickness.
 ii. Exterior metal doors shall be insulated composite metal doors, Level III, 16 ga., Extra Heavy Duty, Model Two seamless, 1-3/4” thickness with polyurethane core.
 iii. Label fire resistive metal doors shall be fire resistive composite metal doors, Level III, 16 ga., Extra Heavy Duty, Model Two seamless, 1-3/4” thickness, with mineral fiberboard core for ratings over 20 minutes.
1. **GENERAL**

2. **PRODUCTS - For UGA Housing Only (New Construction)**
 A. Single Hung Windows
 i. Finish: Warrant fluoropolymer coating to remain free of checking, crazing, peeling, chalking or fading for a period of 15 years, beginning at date of Material Completion.
 ii. Sill locks: Aluminum automatic sill locks, two per window.
 iii. Sash shall be set to open not more than 6” by unauthorized personnel.
 iv. Security screens shall be security level 5 rating
 v. Internal mutin grids: Insulated glass units shall be fabricated with internal muntin grids in air space between interior and exterior glass, for simulated divided lites.
1. **GENERAL**

 A. Related Sections:

 i. 28 13 00 Access Control

 B. For UGA Athens Campus Only: The UGA has sole source approval for Best Access Systems cylinders. The Contractor includes the cylinders as part of the Cost of the Work or the Bid and makes payment directly to Best Access Systems. Best Access Systems ships the cylinders directly to the UGA FMD Key Shop. The FMD Key Shop finalizes keying and the permanent cores are installed by UGA.

 C. For UGA Athletic Association Projects Only: For a project within the UGA Athletic Association lease with the BOR, the cylinders shall be Keymark and the locksets, latchsets, and deadbolts shall accept both Best Access System and Keymark cylinders. The UGAA will procure and install the final cylinders. The Contractor remains responsible for all construction cores.

 D. Keying Schedule: The Contractor shall coordinate and document a meeting with the Best Access Systems representative, the Project Manager, and the FMD Key Shop to coordinate a final keying schedule. The Contractor shall prepare the final keying schedule based on this meeting that clearly indicates how the UGA’s final instructions on keying of locks has been fulfilled and submit it as part of the hardware submittal process.

 E. Single Source Responsibility: Obtain each type of hardware latch and locksets, hinges, closers, etc. from a single manufacturer.

2. **PRODUCTS**

 A. Cylinders:

 i. Acceptable manufacturer:

 a. Best Access System

 ii. Warranty: Three (3) year manufacturer warranty.

 iii. Construction cores are furnished and installed by the Contractor as part of the Cost of the Work or Bid.

 iv. Furnish twenty (20) operating keys and two (2) control keys for use with the construction cores. Furnish three (3) keys per lockset or as directed by Project Manager.

 v. The contract between the Contractor and the supplier of the Best Access Systems cylinders (consisting of cylinder housing and construction cores) shall include provisions (a) imposing upon Best Access Systems the obligation to obtain and deliver to the Contractor the "certificate and receipt" set forth below and (b) relieving the Contractor, subcontractors, and the Owner from an obligation to deliver construction cores to Best Access Systems.

 vi. Application for Payment: Prior to including the cost of the Best Access System cylinders (consisting of cylinder housing and construction core), the operating keys, and the control keys on any periodical application for payment and in any event prior to making demand for final payment, the Contractor shall deliver to the Project Manager a “Certificate and Receipt” in the following exact language:
CERTIFICATE AND RECEIPT
This will certify (a) that the permanent cores for the doors designated in the contract documents for Project No. _____ on the campus of ________________________ were delivered to the comptroller of the said Institution on_____________,20__; that (b) all keys for permanent cores call for in the aforesaid contract documents were delivered to the aforesaid comptroller on the same date; and that (c) by reason of the fact that the cost of the aforesaid permanent cores and the aforesaid keys for the aforesaid permanent cores were included in the cost of the Best mortise cylinders (consisting of cylinder housing and construction core), no additional charge has been made or will be made by Best Access Systems against the Contractor, any subcontractor, the Owner, or the institution for the aforesaid permanent cores or the aforesaid keys for the aforesaid permanent cores. This certificate is furnished in consideration of $1.00 and other good and valuable consideration the receipt of which is hereby acknowledged.

This ________day of__________________, 20__.

Best Access Systems
BY: _______________________
Factory Representative

This receipt, made on behalf of the ____________________ will acknowledge receipt of the permanent cores and the keys to the said permanent cores as referred to in the above certificate of BEST ACCESS SYSTEMS.

__
Comptroller,_____________________________

B. Locksets, Latchsets, Deadbolts
i. Acceptable manufacturer:
a. Equal to Best Access System

ii. Specified locksets, latchsets, and deadbolts must accept Best Access Systems cylinders.

iii. Mortise locksets and latchsets:
 a. Chassis: cold-rolled steel, handing field-changeable without disassembly.
 b. Latchbolts: 3/4-inch throw stainless steel antifriction type.
 c. Lever Trim: through-bolted, accessible design, cast or solid rod lever as scheduled. Spindles: independent break-away. All electrical, mechanical and hazardous spaces are to have tactile warning on the inside of the outside lever.
 d. Deadbolts: stainless steel 1-inch throw.
 e. Electric operation: Manufacturer-installed continuous duty solenoid.
f. Strikes: 16 gage curved stainless steel, bronze or brass with 1” deep box construction, lips of sufficient length to clear trim and protect clothing.

g. Lock cylinders must accept Best Access System cores.

C. Exit Devices

i. Acceptable manufacturer:
 a. Equal to Von Duprin, 98, 35A Series

ii. Warranty: Three year manufacturer warranty.

iii. Characteristics:
 a. All exit devices shall be one manufacturer.
 b. All trim shall be thru-bolted to the lock stile case.
 c. Provide glass bead conversion kits to shim exit devices on doors with raised glass heads.
 d. All exit devices shall incorporate a fluid damper, which decelerates the touchpad on its return stroke and eliminate noise associated with exit device operation. All exit devices shall be non-handed. Touch pad shall extend a minimum of ½ of the door width and shall extend to the height of the cross rail housing for a “no pinch” operation. Plastic touchpads are not acceptable. All latchbolts to be the deadlocking type. Latchbolts shall have a self-lubricating coating to reduce wear. Plated or plastic coated latchbolts are not acceptable. Plastic and “dogging” components are not acceptable.

 e. Lever trim shall be solid case material with a break-away feature to limit damage to the unit from vandalism.

 f. Exit device to include impact resistant, flush mounted end cap design to avoid damage due to carts and other heavy objects passing through an opening. End cap shall be of heavy-duty metal alloy construction and provide horizontal adjustment to provide flush alignment with device cover plate. When exit device end cap is installed, no raised edges will protrude.

 iv. Due to historical buildings and aesthetics, the Design Professional shall communicate with the Project Manager on different solutions for exit devices as well as apply for a variance on these new solutions.

D. Closers and Door Control Devices

i. Acceptable manufacturer:
 a. Equal to LCN Closers, 4041

ii. Characteristics: Door closers shall have fully hydraulic, full rack and pinion action with a high strength cast iron cylinder.

iii. All closers shall utilize a stable fluid withstanding temperature range of 120oF to -30oF without seasonal adjustment of closer speed to properly close the door. Closers for fire-rated doors shall be provided with temperature stabilizing fluid that complies with standards UBC 7-2 (1997) and UL 10C.

 iv. Spring power shall be continuously adjustable over the full range of closer sizes, and allow for reduced opening force for the physically handicapped. Hydraulic regulation shall be by tamper-proof, non-critical valves. Closers shall have separate adjustment for latch speed, general speed and back check.

 v. All closers shall have solid forged steel main arms (and “EDA” forearms for parallel arm closers) and where specified shall have a cast-in solid stop on the
closer shoe ("CNS"). Where door travel on out-swing doors must be limited, use "CNS" or "S-CNS" type closers. Auxiliary stops are not required when cushion type closers are used.

vi. All surface closers shall be certified to exceed ten million (10,000,000) full load cycles by a recognized independent testing laboratory. All closers (overhead, surface and concealed) shall be of one manufacturer and carry manufacturer’s ten year warranty (electric closers to have two year warranty).

vii. Where possible, mount closers inside rooms.

viii. Powder coating finish to be certified to exceed 100 hours salt spray testing by ETL, an independent testing laboratory used by BHMA for ANSI certification.

ix. Magnetic Door Holders to be heavy duty wall or floor mounted with metal housing and complete mounting hardware. Provide 24V holding coils unless otherwise scheduled.

E. Power Operators:

i. Acceptable Manufacturers:
 a. Equal to LCN 4642

ii. All electrically powered operators shall include the following features or functions:
 a. When an obstruction or resistance to the opening swing is encountered, the operator will pause at that point, then attempt to continue opening the door. If the obstruction or resistance remains, the operator will again pause the door.
 b. Easily accessible main power and maintain hold open switches will be provided on the operator.
 c. An electronically controlled clutch to provide adjustable opening force.
 d. A microprocessor to control all motor and clutch functions.
 e. An on-board power supply capable of delivering both 12V and 24V outputs up to a maximum of 1.0 ampere combined load.
 f. All input and output power wiring shall be protected by slow blow fuses. These fuses shall be easily replaceable without special tools or component replacement.

iii. Actuators shall have stainless steel touch plates that are in conformance with the ADA requirements.

F. Overhead Door Holders:

i. Acceptable Manufacturers:
 a. Equal to Glynn Johnson
 b. Equal to Rixson Firemark

ii. Characteristics:
 a. Provide heavy duty door holders of stainless steel.
 b. Concealed holders to be installed with the jamb bracket mortised flush with the bottom of the jamb. The arm and channel to be mortised into the door.
 c. Surface holders to be installed with the jamb bracket mounted on the stop.

G. Floor Stops and Wall Bumpers:

i. Acceptable Manufacturers:
 a. Glynn Johnson
b. Ives
 c. Rockwood Manufacturing

H. Door Bolts / Coordinators:
 i. Acceptable Manufacturers:
 a. Glynn Johnson
 b. Ives
 c. Rockwood Manufacturing
 ii. Characteristics:
 a. Flush bolts to be forged brass 6-3/4" x 1", with 1/2" diameter bolts. Plunger to be supplied with milled surface one side that fits into a matching guide.
 b. Bolt construction to be of rugged steel and brass components.
 c. Automatic flush bolts and self-latching flushbolts shall be UL listed for fire door application without bottom bolts (LBB).
 d. Coordinator to be soffit mounted non-handed fully automatic UL listed coordinating device for sequential closing of paired doors with or without astragals.
 e. Provide filler pieced to close the header. Provide brackets as required for mounting of soffit applied hardware.

I. Push Plates:
 i. Acceptable Manufacturers:
 a. Glynn Johnson
 b. Ives
 c. Rockwood Manufacturing

J. Door Pulls and Pull Plates:
 i. Acceptable Manufacturers:
 a. Glynn Johnson
 b. Ives
 c. Rockwood Manufacturing
 ii. Characteristics:
 a. Provide concealed thru-bolted trim on back to back mounted pulls, but not for single units.
 b. Material to be extruded forged, stainless steel.

K. Protective Plates:
 i. Acceptable Manufacturers:
 a. Glynn Johnson
 b. Ives
 c. Rockwood Manufacturing
 ii. Characteristics:
 a. Provide manufacturers standard exposed fasteners for door trim units consisting of either machine screws or self-tapping screws.
 b. Metal Plates: Stainless Steel, .050 inch, (U.S. 18 gage.
 c. Fabricate protection plates not more than 2 inches less than door width on hinge side and not more than 1 inch less than door width on pull side.
 d. Heights: Kick plates to be 8 inches in height. Mop plates to be 8 inches in height. Armor plates to be 30 inches in height.
e. Armor plates on fire doors to comply with NFPA 80.

L. Thresholds:
 i. Acceptable Manufacturers:
 a. National Guard Products, Inc.
 b. Reese Industries
 c. Zero Weatherstripping Co., Inc.

M. Door Seals / Gasketing:
 i. Acceptable Manufacturers:
 a. National Guard Products, Inc.
 b. Reese Industries
 c. Zero Weatherstripping Co., Inc.

N. Silencers:
 i. Acceptable Manufacturers:
 a. Glynn Johnson
 b. Ives
 c. Rockwood Manufacturing
 ii. Three for each single door; four for pairs of doors.

O. Security Equipment:
 i. Acceptable Manufacturers:
 a. Equal to Schlage Electronics, C0100 Stand-alone
 b. Equal to Von Duprin
 ii. Coordinate security equipment with electrical.

P. Hardware Finishes:
 i. Provide protective lacquer coating on all exposed hardware finishes of brass,
 bronze, and aluminum, except as otherwise indicated. The suffix "-NL" is used
 with standard finish designations to indicate "no lacquer."
 ii. The designations used to indicate hardware finishes are those listed in
 ANSI/BHMA A156.18, "Materials and Finishes," including coordination with the
 traditional U.S. finishes shown by certain manufacturers for their products.
 b. Door Closers: 689 Powder Coat Aluminum
 c. Door Stops: 626 (US26D) Satin Chrome Plated Brass/Bronze
 d. Exit Devices: 626 (US26D) Satin Chrome Plated
 e. Flush Bolts: 626 (US26D) Satin Chrome Plated Brass/Bronze
 f. Hinges (Exterior): 630 (US32D) Satin Stainless Steel
 g. Hinges (Interior): 652 (US26D) Satin Chrome Plated Steel
 h. Locks: 630 (US32D) Satin Stainless Steel
 i. Overhead Holders: 630 Satin Stainless Steel
 j. Protective Plates: 630 (US32D) Satin Stainless Steel
 k. Pull Plates: 630 (US32D) Satin Stainless Steel
 l. Push Plates: 630 (US32D) Satin Stainless Steel
 m. Thresholds/Weather-stripping: 627/628 (US27/US28) Aluminum

3. EXECUTION
 A. Set thresholds for exterior doors in full bed of butyl-rubber or polyisobutylene mastic
 sealant complying with requirements specified in Division 7.
B. Adjust and check each operating item of hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate freely and smoothly or as intended for the application made.

 i. Where door hardware is installed more than one month prior to acceptance or occupancy of a space or area, return to the installation during the week prior to acceptance or occupancy and make final check and adjustment of all hardware items in such space or area. Clean operating items as necessary to restore proper function and finish of hardware and doors. Adjust door control devices to function properly with final operation of heating and ventilating equipment.

C. Prior to project completion, representatives of the lock, exit device and overhead closer manufacturers shall inspect and adjust all units and certify that all units are installed in accordance with the manufacturer’s instructions, and are regulated properly and functioning correctly. A written report shall be provided to the Design Professional as to the inspection and shall include appropriate certificates.
1. **GENERAL**

 A. All sloped glass, regardless of the slope of the angle, shall be a laminated glass assembly so that the outer most layer of glass on each side of the assembly will remain in place if the glass breaks.
1. GENERAL
 A. Related Sections:
 i. 10 28 13 Toilet, Bath, and Laundry Accessories
 B. Warrant all mirrors for five years against silver spoilage.
 C. UGA Housing Only (New Construction):
 i. Typical framed mirror units equal to Bobrick #B-165 Series, 36” by 36”.
1. **GENERAL**
 A. Related sections:
 i. 01 35 46 – Indoor Air Quality Procedures – During Construction
 ii. 09 30 00 – Tiling
 iii. 09 60 00 – Flooring
 iv. 09 68 00 – Carpeting
 v. 09 70 00 – Wall Finishes
 vi. 09 72 00 – Wall Coverings
 vii. 09 80 00 – Acoustical Treatment
 viii. 09 91 23 – Interior Painting

2. **PRODUCTS**
 A. Low volatile organic compound (VOC) materials shall be used within the interior weatherproofing of the facility; zero when available. Refer to section 01 35 46 Indoor Air Quality – During Construction.
 B. UGA Athens Campus Only – The UGA FMD Building Services department implemented a Green Cleaning program for campus facilities in 2005. Design Professionals and Contractors shall specify and install products with finishes that can be successfully cleaned and maintained with the Green Cleaning program’s certified cleaning products. Acceptable Green Cleaning certified products are listed below. Exceptions as deemed appropriate by the Project Manager.
 i. Acceptable manufactures are:
 a. Designed For The Environment (DFE)
 b. Eco Logo
 c. Green Seal
 ii. Acceptable chemical and waxing products are:
 a. Green Solutions Floor Finish Remover (350504) – wax stripper
 b. Green Solutions Floor Seal & Finish (350404) – wax/sealer
 c. Green Solutions Grass Cleaner 102 – window cleaner
 d. Peroxy Clean (003504) – general purpose cleaner
 C. All specified materials must have a demonstrated history in a similar institutional setting, with similar regularity of cleaning and maintenance, for at least five years.

3. **EXECUTION**
 A. Contractor shall include product cleaning requirements for all surfaces in the close out documents.
1. **GENERAL**
 A. Related sections:
 i. 01 35 46 – Indoor Air Quality – During Construction

2. **PRODUCTS**
 A. Low volatile organic compound (VOC) materials shall be used within the interior weatherproofing of the facility; zero when available. Refer to section 01 35 46 Indoor Air Quality – During Construction.
 B. Regional Materials: Gypsum board shall have been manufactured within 500 miles of the project site. Provide documentation as requested by the Project Manager.
 C. Standard gypsum wall board product thickness is 5/8”. For typical wall assemblies, 1/2” gypsum board is prohibited.
 D. Wet areas and/or tile backer board:
 i. Use cement backer board for tile.
 ii. Paper-faced moisture resistant gypsum board panels (“green board”) are not allowed.
 E. Abuse resistant gypsum board and/or impact resistant gypsum board shall be considered for public areas, corridors and student rooms. Design Professional shall coordinate with Project Manager.
 F. **For UGA Housing Only (New Construction)**
 i. Abuse resistant, impact-resistant gypsum board for all public spaces, corridors, and student residential rooms.
 ii. Joint treatment and wall finish shall be level 5 finish for all painted walls in accordance with the “Recommended Specification: Levels of Gypsum Board Finish” as published by the Gypsum Association and level 4 finish for all painted ceilings.
 iii. Joint tape shall be paper tape as approved by abuse-resistant panel manufacturer.
 iv. Corner reinforcement shall be galvanized steel with 1-1/4” wide fine expanded mesh flanges.

3. **EXECUTION**
 A. Install gypsum board only after building is enclosed.
 B. If plaster or gypsum board repairs that cause air borne dust are made as part of the punchlist corrections prior to Final Completion, the Contractor is responsible for full cleaning of areas that are affected by the plaster or gypsum board dust at no additional cost to the Owner. This includes cleaning of all affected surfaces like windows, furniture, carpets, etc. If final air filters were installed prior to any plaster or gypsum board punchlist corrections, Contractor is responsible for replacing air filters that serve affected areas again at no additional cost to the Owner.
1. GENERAL
 A. Related sections:
 i. 01 35 46 – Indoor Air Quality Procedures – During Construction
 ii. 09 00 00 – General Finishes Requirements
 B. For public areas with high levels of pedestrian traffic, especially main entry lobbies and corridors, it is preferable to use a durable, low maintenance, long lasting floor material like granite.

2. PRODUCTS
 A. Low volatile organic compound (VOC) materials shall be used within the interior weatherproofing of the facility; zero when available. Refer to section 01 35 46 Indoor Air Quality – During Construction.
 B. Regional Materials: See below for granite tile requirements. All other tile products shall have been extracted, harvested or recovered, as well as manufactured, within 500 miles of the project site for a minimum of 20%, based on cost, of the total materials value of flooring excluding granite tiling. Provide documentation as requested by the Project Manager.
 C. Silver Cloud Granite:
 i. When the Project budget can afford granite flooring, the main field granite color shall be Silver Cloud (a granite with a marbling of grays and whites).
 ii. Silver Cloud granite shall be quarried, cut, and finished within 500 miles of the project site.
 iii. The basis of design is Silver Cloud granite quarried in Lithonia, Georgia by Broad River Quarries which is located in Elberton, GA, 706-213-1255 or North Carolina Granite, Mt. Airy, NC, 336-786-5141.
 iv. Depending on the tile module selected for the space, the tile may be thin-set tiling or mortar-bed tiling.
 v. The interior granite surface finish shall be honed with a clear penetrating sealer.
 D. Grout at restrooms and food service areas shall:
 i. Use epoxy type grout meeting ANSI 118.3.
 ii. Dark grout colors are preferred for floors.

3. EXECUTION
 A. For granite tile installation, the Contractor shall coordinate a pre-installation meeting with the Design Professional, Project Manager, and tile subcontractor. It is understood that granite is a natural material and that color variation will occur; however, the Contractor and tile subcontractor are responsible for the complimentary color and granite patterning distribution. Attention shall be given to the placement of matched tiles as directed by the Design Professional and Project Manager. The Contractor and tile subcontractor shall avoid placing noticeably lighter Silver Cloud pieces in a field of darker Silver Cloud pieces and vice-versa. If this situation occurs without prior approval from the Project Manager, the Contractor shall remove and reinstall pieces as directed by the Project Manager at no additional cost to the Owner.
1. **GENERAL**
 A. Related sections:
 i. 26 51 00 – Interior Lighting
 B. Ceilings and mechanical/electrical equipment coordination:
 i. Mechanical and electrical access to equipment above a hard-lid ceiling requires
 a minimum of 24” x 24” access panel with clear path to the equipment.
 ii. Coordination with mechanical, electrical, and plumbing equipment is required
 when laying out ceiling grids and supports; no mechanical, electrical, or
 plumbing access should be blocked
 iii. A ‘Maintenance Access’ zone (vertically & horizontally) is to be defined and
 called out on drawings and maintained through final construction.
 iv. Lighting shall not be located in the ‘Maintenance Access’ zones or access points.
 v. Removal of ceiling tiles may not be blocked by equipment locations.
 a. 6-inches from the suspended ceiling to the bottom of equipment &
 ductwork is required for ceiling tile removal.

2. **PRODUCTS**
 A. Concealed spline ceiling support systems are not allowed.
 B. 2’ x 4’ ceiling grid and tile not allowed.

3. **EXECUTION**
 A. Fiberglass batt insulation is not allowed to be placed directly on top of acoustical ceiling
 tiles.
1. **GENERAL**
 A. Related sections:
 i. 01 35 46 – Indoor Air Quality – During Construction
 ii. 09 00 00 – General Finishes Requirements
 iii. 09 30 00 – Tiling
 iv. 09 68 00 – Carpeting

2. **PRODUCTS**
 A. Low volatile organic compound (VOC) materials shall be used within the interior weatherproofing of the facility; zero when available. Refer to section 01 35 46 Indoor Air Quality – During Construction.
 B. Regional Materials: For carpeting, refer to section 09 68 00 Carpeting. All other flooring products shall have been extracted, harvested or recovered, as well as manufactured, within 500 miles of the project site for a minimum of 20%, based on cost, of the total materials value of flooring excluding carpeting. Provide documentation as requested by the Project Manager.
 C. Vinyl Composition Tile (VCT) shall contain a minimum 10% post-consumer recycled content or a minimum 5% post-consumer recycled content combined with a minimum 10% pre-consumer recycled content.
1. **GENERAL**
 A. Related sections:
 i. 01 35 46 – Indoor Air Quality – During Construction
 ii. 01 74 19 – Construction Waste Management and Disposal
 iii. 09 00 00 – General Finishes Requirements
 B. Any existing carpeting that is removed must be recycled per section 01 74 19 Construction Waste Management and Disposal.
 C. As part of the submittals, provide flame spread documentation demonstrating compliance of carpets with code requirements. State the minimum requirements per the applicable codes and the flame spread of the products.
 D. Carpeting is prohibited in telecommunications MDF / IDF rooms.

2. **PRODUCTS**
 A. Low volatile organic compound (VOC) materials shall be used within the interior weatherproofing of the facility; zero when available. Refer to section 01 35 46 Indoor Air Quality – During Construction.
 B. Regional Materials: Provide carpets that have been manufactured within the state of Georgia. Provide documentation as requested by Project Manager.
 C. Use only carpet and carpet cushion that meets or exceeds requirements of Green Label Plus, set by the Carpet and Rug Institute.
 D. Any carpet cushion shall be an attached backing system to the carpet and not a separate underlayment system.

3. **EXECUTION**
 A. The Design Professional shall forward manufacturer’s suggested carpet maintenance cleaning methods to the Project Manager for review and approval.
 B. Minimum 10-year manufacturer’s warranty covering: wear, edge ravel, tuft bind, delamination, and static control.
 C. Requirements for carpeting attic stock shall be coordinated with the Project Manager.
1. GENERAL
 A. Wall coverings are a long term maintenance issue.

2. PRODUCTS
 A. Vinyl coated fabric wall coverings, flexible vinyl wall coverings, rigid sheet vinyl wall coverings, and wallpaper are not allowed. Wall coverings are occasionally allowed as specialty accents, but must be approved through the variance process.
 B. Textile wall coverings are not allowed unless they are part of an acoustical wall treatment system approved by the Project Manager.
1. **GENERAL**
 A. Related sections:
 i. 09 00 00 – General Finishes Requirements
 ii. 12 05 13 – Fabrics

2. **PRODUCTS**
 A. Low volatile organic compound (VOC) materials shall be used within the interior weatherproofing of the facility; zero when available. Refer to section 01 35 46 Indoor Air Quality – During Construction.
 B. As part of the submittals, provide flame spread documentation demonstrating compliance of the acoustical treatment assembly with code requirements. State the minimum requirements per the applicable codes and the flame spread of the products and assembly.
09 91 23
INTERIOR PAINTING

1. GENERAL
 A. Related sections:
 i. 01 32 16 – Construction Progress Schedule
 ii. 01 35 46 – Indoor Air Quality – During Construction
 B. In addition to card stock brush-outs, Contractor shall provide 6’x6’ in place samples for each paint color, with final light fixtures and lamps in place, as requested by the Design Professional and/or Project Manager as part of the Cost of the Work or Bid.

2. PRODUCTS
 A. Low volatile organic compound (VOC) materials shall be used within the interior weatherproofing of the facility; zero when available. Refer to section 01 35 46 Indoor Air Quality – During Construction.
 B. Acceptable Manufacturers:
 i. Benjamin Moore Company
 ii. Duron Paint Company
 iii. ICI Dulux
 iv. Pittsburgh Paints
 v. Porter Paint Company
 vi. Sherwin-Williams Company
 C. Paint Sheens
 i. Painted walls shall have eggshell paint sheen.
 ii. Painted wood trim shall have semi-gloss sheen.
 iii. Flat paint sheen is prohibited on walls and trim.
1. GENERAL
 A. Refer to 26 56 00 – Exterior Lighting for requirements regarding exterior signage.
 B. For projects at the University of Georgia, Athens, Georgia campus, the University of Georgia Facilities Management Division Grounds Department Sign Shop will fabricate the interior environmental way finding signage for the project. The Owner will provide the signs and the Contractor shall install them. The quantity and location of signs shall be agreed upon during the construction document design phase and the installation costs shall be included in the Contractor’s Cost of the Work in the Guaranteed Maximum Price.
1. **GENERAL**
 A. Related Sections:
 i. 10 28 13 Toilet, Bath, and Laundry Accessories
 ii. Use ceiling hung toilet partitions where possible and/or structurally feasible.
 B. Use wall-mounted vanity panels at urinals.
 C. Coat hooks shall be mounted on permanent non-moving toilet partitions and shall not be mounted on the toilet compartment doors.

2. **PRODUCTS**
 A. **UGA Athletic Association Only**
 i. All toilet partitions at stadium main public restrooms shall be solid plastic HDPE (High Density Polyethylene).
1. **GENERAL**
 A. Provide corner guards in all public spaces, service areas and at specialty finishes.
 B. Protect outside corners of gypsum board partitions in public corridors to minimum 36” height as deemed appropriate by Project Manager.
 C. Prefer wall protection at chair rail height for public areas with moveable seating.

2. **PRODUCTS**
 A. Material as appropriate for specific conditions, coordinate with Project Manager.
1. **GENERAL – For UGA Campus at Athens Only**
 A. The UGA has sole source approval for soap dispensers, toilet tissue dispensers, and paper towel dispensers and will provide these products for the project. The basis specification products are provided by FMD Services at no additional cost to the project. If upgrade finishes are selected then the Design Professional must inform and coordinate the upgrades with the Project Manager as the Project Manager will need to order the upgrades products from FMD and there will be an associated cost that will have to be funded by the project. Some of the products are available in stainless steel material and some are available in plastic in a stainless steel color. The Contractor shall install the Owner provided toilet accessories listed above and shall include the installation costs as part of the Cost of the Work or Bid. The Contractor is responsible for coordinating in wall blocking.
 i. **UGA Athletic Association project only.** For projects within the UGAA lease with the BOR, the UGAA does not use the UGA standard toilet accessories listed in this section. Coordinate with the Project Manager for information on products specific to UGAA.
 ii. **UGA Housing project only (New construction)** does not use the UGA standard toilet accessories and its requirements are listed separately below.

2. **PRODUCTS**
 A. **Soap Dispenser**
 i. Manufacturer:
 a. GOJO Industries
 One GOJO Plaza, Suite 500, Akron, Ohio 44311
 P.O. Box 991, Akron, Ohio 44309-0991 USA
 1-800-321-9647, 1-330-255-6000
 b. Model:
 a. GOJO FMX-12 Dispenser
 b. Product SKU Number: 5150-06
 c. Website: http://www.gojo.com/united-states/productsearch.aspx?SearchStr=5150-06&ProdID={BB36B071-6C22-4676-BCF8-E64245BA5B8C}
 d. See additional pages in this section for manufacturer data sheet.
 ii. Capacity: 1250 mL Capacity
 iii. Color and Material
 a. Standard is plastic in Dove Gray with glossy finish
 b. Stainless steel is an optional upgrade; similar style but may be a different model number.
 iv. Special Features
 a. ADA compliant one hand push operation
 b. Includes optional key lock
 B. **Toilet Tissue Dispenser**
 i. 2-Roll
 a. Manufacturer/Vendor
1) Wausau Paper: www.wausaupaper.com

b. Model
1) Wausau (Bay West Green Seal Certified EcoSoft) Silhouette
Dbl-Serv 2-Roll OptiCore Capacity
2) Product Number: 80200
3) Website:
 http://www.wausaupaper.com/Towel_and_Tissue/Products/1839/1033.aspx
4) See additional pages in section for manufacturer data sheet.

c. Size: 11-1/16” x 8-13/16” x 7-3/16”
d. Weight: 2.1 lbs.
e. Color and Material
 1) Standard is plastic in Black Translucent
 2) Stainless steel is an optional upgrade; similar style but may be a
different model number.
f. Special Features: ADA Title III Compliant and Locking Cover

dii. 3 Roll

a. Manufacturer:
 1) Wausau Paper: www.wausaupaper.com

b. Model
1) Wausau (Bay West Green Seal Certified EcoSoft) Silhouette
Revolution 3-Roll OptiCore
2) Product Number: 80300
3) Website:
 http://www.wausaupaper.com/Towel_and_Tissue/Products/1840/1033.aspx
4) See additional pages in this section for manufacturer data sheet.

c. Size: 14-1/8” x 14-9/16” x 6-5/16”
d. Weight: 3.4 lbs.
e. Color and Material
 1) Standard is plastic in Black Translucent
 2) Stainless steel is an optional upgrade; similar style but may be a
different model number.
f. Special Features
 1) ADA Title III Compliant
 2) Locking Cover

C. Paper Towel Dispenser

i. Manufacturer:
 a. Wausau Paper: www.wausaupaper.com

ii. Model
a. Wausau Bay West Silhouette OpticServ Hands-Free
b. Product Number: 86500
c. Website:
 http://www.wausaupaper.com/Towel_and_Tissue/Products/1841/1033.aspx

iii. Size: 11-11/16” x 16-11/16” x 9-7/16”
iv. Weight: 6.6 lbs.

v. Color and Material: Standard is plastic in Black Translucent

vi. Special Features: ADA Title III Compliant

vii. Notes
 a. Design Professional is to coordinate final selection with Project Manager.
 b. See additional pages in section for manufacturer data sheet.

D. Toilet and Bath Accessories – **For UGA Housing Only (New Construction)**
 i. All products furnished and installed by Contractor unless noted otherwise.
 ii. Public Restroom
 a. Toilet tissue dispenser equal to Bobrick B-2740
 b. Grab bars equal to Bobrick #B-6806 with lengths as required by code.
 c. Rapid-drying hand dryer as equal to Excel, Xlerator; surface mounted; internally grounded, automatic, activated by infrared optical sensor, with automatic shutoff, and cover shall be stainless steel with brushed finish.
 d. Partition-mounted feminine napkin disposal cabinet for two toilet compartments equal to Bobrick #B-354
 e. Surface-mounted feminine napkin disposal cabinet equal to Bobrick #B-254
 f. Soap dispensers provided and installed by Owner
 iii. Private Bath in Residential Unit:
 a. Toilet Tissue Dispenser – single-roll, recessed units at non-rated walls, residential units equal to Bobrick #B-667
 b. Toilet Tissue Dispenser – single-roll, surface-mounted units at fire-rated walls, residential units equal to Bobrick #B-2730
 c. Grab bars, equal to Bobrick #B-6861.99 with lengths as required by code.
 d. Towel bars, 1” diameter, 18” Long, equal to Bobrick #B-530.
 e. Robe/towel hook equal to Bradley SA37.
 f. Shower rods equal to Bobrick #B-6047.
 g. Shower seats equal to Bobrick #B-5181.
 iv. Custodial Closet
 a. Mop and broom holder (3’-0” length) equal to Bobrick #B-223 X 36
GOJO FMX-12 DISPENSER
PRODUCT SKU: 5150-06
COLOR: DOVE GRAY

PRODUCT INFORMATION

Product Name
GOJO FMX-12 Dispenser

Product Number [SKU]
5150-06

Manufacturer
GOJO: www.gojo.com

Features
- Side Window
- Key Lock
- Soft Push
- Wall Mountable

Certification
- ADA Compliance
- Green Compliance

Color
Dove Gray

Package Quantity
One Each

Weight
1.30 LBS.

Capacity [Volume]
1250 ML

Height
10-1/2”

Material
Plastic

Small size with high capacity
Dove Gray with glossy finish
ADA compliant one hand push operation
Optional key lock included
Lifetime guarantee

GOJO INDUSTRIES
P.O. Box 591
Akron, OH 44309-0591 USA
Telephone: 1-800-521-8647
Fax: 1-800-FAX-6OJO (1-800-329-4656)
www.gojo.com
Towel & Tissue Products

80200 Silhouette®Dual-Serv® 2-Roll OptiCore® Tissue Dispenser

The Dual-SERV® 2-roll side-by-side tissue dispenser will accommodate OptiCore® tissue products for controlled-use dispensing and optimum savings in maintenance time and costs. The Dual-SERV® is designed for high-capacity applications and features a locking cover to prevent product pilferage and waste. When installed according to the ADA guidelines, this Dual-SERV® dispenser is ADA Title II complaint.

Features & Benefits

* Sleek, contemporary styling
* Accommodates Dual-SERV®, Dual-Natural®, and Ensoft® Green Seal™ bath tissue
* OptiCore® technology to provide controlled usage and cost savings
* Translucent cover allows service staff to see at-a-glance when it’s time to refill
* Counter imprinting available

Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPC</td>
<td>6 55366 80200 J</td>
</tr>
<tr>
<td>Controlled-Use Bath Tissue Dispenser</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>Black Translucent</td>
</tr>
<tr>
<td>Dispenser Size (W” x H” x D”)</td>
<td>11 1/16 x 6 13/16 x 7 3/16</td>
</tr>
<tr>
<td>Dispenser Weight</td>
<td>2.2 lbs</td>
</tr>
<tr>
<td>Case Size (W” x H” x D”)</td>
<td>11 3/8 x 6 15/16 x 7 5/8</td>
</tr>
<tr>
<td>Case Shipping Weight</td>
<td>33 lbs</td>
</tr>
<tr>
<td>Dispenser Case Cube</td>
<td>6.45</td>
</tr>
<tr>
<td>Cases Per Unit</td>
<td>102</td>
</tr>
</tbody>
</table>
TOILET TISSUE DISPENSER – THREE ROLL

80300 Silhouette® Revolution®
3-Roll OptiCore® Tissue Dispenser

The Revolution® 3-roll tissue dispenser is designed for high-capacity controlled-use dispensing of OptiCore® tissue products. When one roll of tissue is used, simply turn the dial to advance to the next roll. The OptiCore® technology ensures the maximum use of each roll. The Revolution® dispenser is easy to maintain and replace. The Revolution® is ADA Title II complaint when installed according to ADA guidelines. This sleek, contemporary dispenser also features a locking cover to prevent product pilferage and waste.

Features & Benefits
- Accepts Silhouette® Soft, Ultra, and EcoSoft® bath tissue
- Accepts OptiCore® technology to provide controlled usage and cost savings
- High-capacity dispensing
- Translucent cover allows service staff to see-at-a-glance when it's time to refill
- Custom imprinting available

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>UFC</td>
<td>085860.80300.0</td>
</tr>
<tr>
<td>Description</td>
<td>Controlled-Use Bath Tissue Dispenser</td>
</tr>
<tr>
<td>Color</td>
<td>Black/Translucent</td>
</tr>
<tr>
<td>Dispenser Size (W x H x D)</td>
<td>14 3/8 x 14 9/16 x 6 5/16</td>
</tr>
<tr>
<td>Dispenser Weight</td>
<td>3.4 lbs</td>
</tr>
<tr>
<td>Case Size (W x H x D)</td>
<td>14 7/16 x 14 11/16 x 6 11/16</td>
</tr>
<tr>
<td>Case Shipping Weight</td>
<td>51 lbs</td>
</tr>
<tr>
<td>Dispenser Case Cube</td>
<td>0.82</td>
</tr>
<tr>
<td>Cases Per Unit</td>
<td>60</td>
</tr>
</tbody>
</table>
PAPER TOWEL DISPENSER

wausauPAPER
Towel & Tissue Products

Return to Listing
86500 Silhouette® OptiServ®

Hands-Free

The OptiServ® Hands-Free dispenser only requires you to touch your personal towel, thereby reducing the chance for cross-contamination from touching commonly-used surfaces such as levers or buttons which makes it ideal for food preparation and healthcare environments. This high-capacity dispenser accommodates up to a 3,000-foot roll along with a 4-inch stub roll to optimize dispenser capacity and save maintenance time. With each pull of the slightly exposed towel, the OptiServ® dispenser cuts a pre-measured 10-inch towel for maximum usage control. ADA compliant when installed according to the Guidelines for Accessible Design.

Features & Benefits

- Side-inTEGRAL roll for easy when opening and loading the dispenser.
- Ideal for healthcare and food preparation environments where cleanliness is highly important.
- Unique side-inTEGRAL feature that allows the fresh roll to self-start only after the stub roll is completely used.
- Custom labeling available.

Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPC</td>
<td>0 85606 86500 8</td>
</tr>
<tr>
<td>Description</td>
<td>Controlled Roll Towel Dispenser</td>
</tr>
<tr>
<td>Color</td>
<td>Black Translucent</td>
</tr>
<tr>
<td>Dispenser Size (W" x H" x D")</td>
<td>11 11/16 x 6 11/16 x 9 7/16</td>
</tr>
<tr>
<td>Dispenser Weight</td>
<td>6.6 lbs</td>
</tr>
<tr>
<td>Case Size (W" x H" x D")</td>
<td>10 3/4 x 12 1/4 x 9 3/16</td>
</tr>
<tr>
<td>Case Shipping Weight</td>
<td>8 lbs</td>
</tr>
<tr>
<td>Dispenser Case Cube</td>
<td>1:14</td>
</tr>
<tr>
<td>Cases Per Unit</td>
<td>90</td>
</tr>
</tbody>
</table>
1. GENERAL
 A. Related sections:
 i. University of Georgia Planning Principles – Site Campus Planning Principles –
 Site Furnishings – Transportation Shelters

2. PRODUCTS
 A. Manufacturer/Vendor
 i. Classic Powder-Ceramic Coating
 a. Address: 10363 Double Bridges Road, Winterville, GA, 30683
 b. Phone: 706-227-2300
 ii. Metrosite Fabricators (UGAMart Vendor)
 a. Address: 180 Industrial Park Blvd., Commerce, GA, 30529
 b. Phone: 706-335-7045
 B. Model
 i. Custom: Bus Shelter – University of Georgia
 ii. Transit Passenger shelter constructed of square steel tube with pitched roof and
 16-gauge, 42% perforated vertical steel screens rivet fastened to C-Channel
 Frames, allowing for air circulation. Utilizes a shade screen fixed along entire
 back length of shelter and both ends. Removable roof design allows for ease in
 shipping, installation, and maintenance.
 C. Size
 i. 11’-10” Long x 4’-6” Deep x 7’-11-3/8” Tall
 ii. Frame: 2-1/2” Square Steel Tubing
 iii. Anchoring: 1/2” Anchor Bolts through Welded Steel Footing Plate
 D. Finish/Color
 i. Coating: Oven-Baked Powder Coating Finish
 ii. Color: Fine Texture Black
 iii. All Finishing Screws Need to Match Oven-Baked Powered Coat Finish and Color
 of Fine Texture Black
 E. Special Features
 F. Roof: Standing Seam Steel Roofing
NOTES
1. OVEN BAKED POWDER COAT
FINISH, COLOR: FINE TEXTURE BLACK
1. **GENERAL**

 A. Related Sections:

 i. 72 41 00 General Audio-Visual Systems Requirements

 B. Tension projection screens are prohibited.
1. GENERAL
 A. As a minimum follow the current Board of Regents of the University System of Georgia Design Criteria for Laboratories. This document is located at http://www.usg.edu/facilities/resources/design_criteria_for_laboratories.
1. GENERAL
 A. Design Professional coordinates with Project Manager and FMD Services Department on whether a waste compactor shall be part of a project and the type of compactor used. Suitable types include: stationary compactors, self-contained compactors, and auger compactors.

2. PRODUCTS
 A. Acceptable manufacturers are:
 i. Bakers Waste Equipment
 ii. Sani-Tech Systems
 iii. Wastequip
1. GENERAL
 A. Related sections:
 i. 01 35 46 – Indoor Air Quality Procedures – During Construction
 ii. 09 00 00 – General Finishes Requirements
 iii. 12 05 13 – Fabrics
 B. For OUA Projects, the Design Professional shall include the Project Manager and the OUA Assistant Director of Interiors in all decisions related to FF&E.
 C. For FMD Projects, the Design Professional shall include the Project Manager and the Interior Designer in the FMD Engineering Department in all decisions related to FF&E.
 D. Early in the programming and planning phase of a major renovation or new construction project, the method to be used for delivery of interior design services should be established. The Design Professional should come to an agreement with the Project Manager and the OUA Assistant Director for Interiors or the FMD interior designer to determine responsibility for furnishings, fixtures and equipment (FF&E): whether design is to be done under the Design Professional’s contract, whether a separate interior Design Professional will be contracted directly with the Owner, or whether OUA or FMD, will assume responsibility for the design and purchasing of furnishings under another arrangement.
 i. For most major construction and renovation projects, the Design Professional scope includes interior design, but does not include final selection and specification of the loose furnishings. The Design Professional may propose certain systems or styles that complement the architectural design, but typically the Design Professional will not prepare the full furnishings specifications.
 E. The scope and budget for furnishings must be established early in the design process so the furniture systems will fall into its proper sequence in the project schedule. A first step in the process may be conducting an inventory of the End-User’s existing FF&E, with an evaluation recommending re-use or replacement. Design Professional shall coordinate with the Project Manager to finalize scope of work (if any) regarding inventorying of existing FF&E.
 F. Prior to the end of schematic design, the Design Professional shall schedule a meeting to initiate the design and proposal process for related interior FF&E.
 G. For schematic design and design development the Design Professional shall indicate preliminary furniture layout on the floor plans. These preliminary furniture layouts are to assist with confirmation of function and size of space and are place holders for the final furnishing selections. The Design Professional is required to use furniture templates that are realistic and do not make the spaces appear larger than they are by using furniture templates that are too small to be functional. The Design Professional, if not using actual manufacturer furniture templates, shall insure that the following minimum overall footprint sizes are used. If the Design Professional utilizes furniture floor plan templates that are smaller than the sizes listed below, the Design Professional is responsible for re-design as required without additional compensation:
 i. Guest Chair: minimum 24” D x 24” W
 ii. Task Chair: minimum 30” D x 30” W
 iii. Typical Desk: minimum 36” D x 72” W
iv. Conference Table: 2’ of length per each chair, width: length of table should seat equal number of occupants; i.e. 20’ table seats 20 occupants

v. Typical Credenza: 24” D x 72” W

vi. Fixed Auditorium Seat: minimum of 4 seat spacing 20”, 22”, 23” & 24” to accommodate range of shapes and sizes

H. After the proposed products are reviewed and approved, the OUA Assistant Director for Interiors or the FMD interior designer will review all related space plans, concept layouts and assist the Design Professional with coordination of the location of power/voice/data and any required utilities. The Design Professional shall provide an electronic background floor plans that shows power, voice, and data on one floor plan and shall relocate power/voice/data locations as requested by the Project Manager as part of the Design Professional’s Basic Design Services Fee.

I. The OUA Assistant Director for Interiors or the FMD interior designer will typically coordinate receipt of FF&E samples, approval by End-Users, verification of FF&E space plans, procurement, delivery, installation, punch list generation and warranty supervision for the project furnishings.

J. Contract Documents and submittals must clearly identify and note specialty items, including their locations and installation requirements.

2. PRODUCTS

A. Low volatile organic compound (VOC) materials shall be used within the interior weatherproofing of the facility; zero when available. Refer to section 01 35 46 Indoor Air Quality – During Construction.

B. All FF&E items selected shall meet the Business and Institutional Furniture Manufacturers Association (BIFMA) Business and Institutional Furniture Sustainability Standard, E3-2008. Provide documentation to the Project Manager as requested.

C. The State of Georgia, Department of Administrative Services (DOAS) State Purchasing Division, has established a statewide contract for a variety of products, services, and equipment which leverages the state’s purchasing power. These contracts cover commonly specified, moveable and fixed furnishings commodities such as those required for office, conference, classrooms and public spaces. This contract is available for use by all state, city and county public entities within the state of Georgia. Currently approximately seventy-five (75) approved furniture vendors / manufacturers are accessed via the Team Georgia Marketplace website:

 http://doas.ga.gov/StateLocal/SPD/Pages/StatewideContractIndex.aspx

i. The key benefits to specifying product from this contract include:
 a. Multiple authorized dealers for the varied manufacturers
 b. Pre-negotiated manufacturers’ discounts
 c. Additional Discounts with increased purchase volume
 d. Guaranteed pricing discounts for additional post occupancy purchases
 e. 24-Hour Access Online Catalog
 f. Guaranteed On-time Delivery and Installation
 g. Workplace Setting Consultation via Network of Authorized Dealers
 h. Minimum 10 year product warranty
 i. Tax-exempt purchase

D. All FF&E items selected, by virtue of meeting the DOAS State Contract requirements, shall be tested and rated by the Business and Institutional Furniture Manufacturers Association (BIFMA) for structural integrity and static weight capacity.
E. For all furniture, including but not limited to seating, desk systems, moveable, fixed and/or powered wall panel systems, etc., the Design Professional shall only specify products that are available on Statewide Contract.

F. For laboratory, audio visual and other specialty equipment, the Design Professional shall coordinate with the Project Manager to determine which items should be procured through statewide contract and which items should be included in the Contractor’s scope of work. All FF&E items will be reviewed to determine which items are to be dock delivered, and which require more detailed installations involving mechanical, electrical, or plumbing hard connections.

G. All specified FF&E should have a demonstrated history in a similar higher education institutional setting, with similar regularity of cleaning and maintenance.

H. Custom materials or materials that require significant specialized maintenance should be avoided.

3. EXECUTION

A. Requirements for FF&E Attic Stock should be coordinated with the Project Manager.
1. **GENERAL**
 A. Related sections:
 i. 09 80 00 – Acoustical Treatment
 ii. 12 00 00 – General Furnishings Requirements

2. **PRODUCTS**
 A. All fabrics shall be evaluated and approved by the OUA Assistant Director for Interiors or the FMD Interior Designer based on intended use and location, fiber content, Wyzenbeek Wire screen and/or Cotton Duck abrasion rating, protective finish/coating, pattern and required maintenance.
 B. Finishes of all FF&E items shall reflect the nature of the building’s architectural aesthetic and documentation, if requested, shall be provided to demonstrate minimum compliance with BIFMA Class A, UFAC Class #1 and CAL #117, compliance, California Technical Bulletin, Fabric Open flame Burn Test.
 C. As part of the submittals, provide flame spread documentation demonstrating compliance of fabrics with code requirements. State the minimum requirements per the applicable codes and the flame spreads of the products.
12 20 00
WINDOW TREATMENTS

1. GENERAL
 A. Related Sections:
 i. 12 21 00 – Window blinds
 B. Consider the exterior façade of the building and coordinate window treatments to provide a uniform look. Do not mix vertical blinds and horizontal blinds in the same facility.

2. PRODUCTS
 A. Plastics blinds are prohibited.
 B. Metal mini blinds, with 1” or 2” slats, are generally preferred and are acceptable; metal micro blinds are prohibited.
 C. Wood blinds may be utilized in specialty areas or as appropriate to a specific building.
1. **GENERAL**
 A. Related Sections:
 i. 12 20 00 – Window Treatments
 B. Do not use plastic blinds.
 C. Prefer horizontal blinds over vertical blinds.
 D. Mini blinds are acceptable; micro blinds are not allowed.
1. **GENERAL**
 A. Related Sections:
 i. 01 35 46 – Indoor Air Quality – During Construction
 ii. 06 61 16 Solid Surface Fabrications

2. **PRODUCTS**
 A. Low volatile organic compound (VOC) materials shall be used within the interior weatherproofing of the facility; zero when available. Refer to section 01 35 46 – Indoor Air Quality – During Construction.
 B. **For UGA Housing only (New Construction)**
 i. Synthetic solid surfacing for:
 a. Countertops and lavatory tops
 ii. Synthetic solid surfacing material shall be solid acrylic or polyester and acrylic resin based solid, structural surfacing material
 a. Material shall be through-patterned and homogeneous. No coated materials or non-homogeneous materials allowed.
 b. Materials shall be 100% repairable
 iii. Synthetic solid surfacing material shall be matte finish
 iv. Thickness
 a. Lavatory tops and counter tops: 1/2".
 v. Tops
 a. Tops shall be provided as full-length units
 b. Bowls for bedroom lavatory tops shall be integral type with and same material and appearance as surrounding tops.
1. **GENERAL**
 A. **Ribbon Rack Placement Considerations**
 i. If racks are to be placed in ‘parallel,’ allow 12’ (feet) on center of spacing between the racks. This permits 4½’ (feet) clearance for bicycles on each rack with a 3’ (feet) common area in between for ingress and egress.
 ii. If racks are to be placed in ‘series,’ allow a minimum of 2’ (feet) on center to achieve maximum rack capacity. Note: The racks can be placed 1’ (foot) on center to achieve a ‘continuous’ look but will result in a loss of one space as the end position counts as a space.
 B. **Ribbon Rack Clearances**
 i. If mounting rack ‘parallel’ to a wall, leave 2½’ (feet) from the wall and 4½’ (feet) on the other side of the rack for bicycles.
 ii. If mounting rack ‘perpendicular’ to a wall, leave a minimum of 1½’ (feet) from the wall as the end counts as a space.

2. **PRODUCTS**
 A. **Acceptable Manufacturer:**
 i. Equal to AAA Ribbon Rack Company, Division of: Brandir International, Inc.
 a. Address: 521 Fifth Avenue, 17th Floor, New York, NY 10175-1799
 b. Website: www.ribbonrack.com
 B. **Model**
 i. Ribbon Rack – Equal to 7 Bicycle, #RB-07IG
 C. **Size**
 i. 62.375” Length
 D. **Finish/Color**
 i. Hot-Dipped Galvanized.
 E. **Special Features**
 i. Inground anchor mount
 F. **Technical Specifications**
 i. All standard units made from: ASTM A53 Schedule 40 Steel Pipe (2.375” OD x 0.154 Wall), hydraulically bent with a mandril, hot dipped galvanized after fabrication.
 G. **Installation Options**
 i. Inground Anchor Mount (Standard)
 ii. Freestanding Mount (Optional & Extra)
 iii. Surface Flange Mount (Optional & Extra)

3. **EXECUTION**
 A. **Mounting Instructions**
 i. Measure centerline of end post to centerline of end post to determine spacing for footing (holes). (For model RB-05, spacing is 3’; RB-07, spacing is 5’; RB-09, spacing is 7’; RB-11, spacing is 9’).
 ii. Prepare footings (holes) approximately 8” wide by 12” to 48” deep depending on frost conditions.
 iii. Use 1½” high wood block for spacing between lower U-bends of rack and the ground.
iv. Place anchoring bolts through the holes near the bottom of each end of the rack.

v. Place ‘Ribbon’ Rack in prepared holes, making sure lower U-bends are resting on the 1 ½” high wood block.

vi. Pour cement and level rack.

vii. Support until dry and remove wood block.

B. Installation Instructions

i. Measure centerline of end post to centerline of end post to determine spacing for footings (holes). For model RB-071G, spacing is 5'-0”.

ii. Prepare footings (holes) approximately 12” x 12” by 18” deep.

iii. Use 3½” high wood block for spacing between lower U-bends of rack and the top of concrete.

iv. Place anchoring bolts through the holes near the bottom of each end of the rack.

v. Place Ribbon Rack in prepared holes, making sure lower U-Bends are resting on the 3½” high wood block.

vi. Pour cement and level rack.

vii. Support until dry and remove wood block.
1. **GENERAL**

2. **PRODUCTS**

 A. **Manufacturer/Vendor**

 i. Equal to TimberForm by Columbia Cascade

 a. Slagley Architectural & Recreational Products

 b. Address: P.O. Box 496, Greenville, AL 36037

 c. Office Phone: 800-753-8707 or 334-382-7789

 d. Fax: 334-382-9847

 B. **Model**

 i. Equal to Renaissance Litter Container, #2811-OT

 C. **Finish/Color**

 i. Color-Coated Steel/Black Suede

 D. **Special Features**

 i. Open Top
1. GENERAL
2. PRODUCTS
 A. Manufacturer:
 i. Equal to TimberForm by Columbia Cascade
 a. Palmetto Recreation Equipment, LLC.
 b. Address: 1052 Peninsula Drive, Prosperity, SC 29127
 c. Office Phone: 888-214-5253
 d. Email: sam_woods@bellsouth.net
 e. Website: www.timberform.com
 B. Model
 i. Equal to Model Number: 2806-6 - Renaissance Bench with Armrests
 ii. “Backless” Renaissance bench may be used where appropriate. Coordinate with Project Manager.
 C. Size
 i. Length: 6 Feet
 D. Finish/Color
 i. Color-Coated Steel/Black Suede
 E. Special Features
 i. Permanent Surface Mount
 F. Note
1. **GENERAL**

2. **PRODUCTS**

 A. Manufacturer:

 i. Equal to Athens Design Development, LLC

 ii. 585 Barber Street, Studio B, Athens, GA 30601

 B. Model

 i. Equal to CLR (Cigarette Litter Receptacle)

 a. Unit comes with a stainless steel key lock with 2 keys per unit provided.

 b. The unit is 17” tall, 4” wide and 4” deep. Mounted on the pole, the total height is 50”.

 c. The weight of the unit is 16.6 lbs., the total weight with the pole is 26 lbs.

 d. The foot at the base of the pole is a 6” diameter with 3 – 5/8” holes.

 e. The CLR is powder coated steel.

 f. Color: Black interior with a silver exterior.

3. **EXECUTION**

 A. Full unit mounted on a pole and ready for installation. Installation requires bolting the unit’s footing into an existing walkway of an appropriate surface or a concrete footing.
1. **GENERAL**

 A. Due to water conservation efforts and the high maintenance requirements of fountains, new interior and/or exterior fountains are not allowed.

 B. If a variance is granted for a fountain, it shall be connected to the sanitary sewer system and shall not connect to the storm sewer system.
1. **GENERAL**
 A. **Introduction:** Metal Building Systems are generally used in rural or agricultural settings and the design intent is for the metal building form to emulate the shape of a barn.
 B. The roof shall be a gable form with a minimum 6 in 12 slope.
 C. Overhangs, of at least 12”, are required on all sides of the building.
 D. Vinyl soffits are not allowed.
 E. The roof color and material shall be equal to Galvalume (55% Aluminum – Zinc alloy coated sheet steel).
 F. The siding color shall be a medium gray and color samples shall be submitted to the Project Manager for approval.
 G. All roof penetrations shall utilize a pre-manufactured boot and/or sleeve that is specifically designed for a metal building roof system.
1. **GENERAL**
 A. Related sections:
 i. 01 78 00 – Closeout Submittals
 B. Elevator control systems of proprietary design or that use a separate device for troubleshooting are not acceptable. Contractor shall submit complete information to the Design Professional and Project Manager demonstrating the universal servicing capability of the proposed system.

2. **PRODUCTS**
 A. Acceptable manufactures are:
 i. Premier Elevator Co., Inc.
 ii. Schindler Elevator Corporation
 iii. Thyssenkrupp
 B. Microprocessor and Control Systems
 i. The system shall be of a non-proprietary design. The equipment shall be maintainable by any elevator maintenance company employing certified elevator mechanics without the requirement to purchase, lease, rent or borrow additional diagnostic devices, special tools, instructions, etc. from the original equipment manufacturer.
 a. Microprocessor and control systems basis of design is GAL Manufacturing Corp., Bronx, NY.
 ii. The equipment shall be provided with on-site capability to diagnose faults of all components, parts, circuit boards, etc. of the solid state controls. If the equipment requires a separate, detachable device/tool for fault diagnostics or adjustments, that device/tool shall be incorporated as a permanent part of the equipment and provided to Owner as a part of the installation.
 iii. The device/tool shall become the property of the Owner and shall be provided with complete troubleshooting guides and all technical information including passwords, addresses, etc. to completely adjust the elevator. The device/tool shall be of the perpetual type (never need recharging or reprogramming).
 iv. The equipment manufacturer must agree to sell any and all parts, printed circuit boards, programmed chips, transducers, controller power supplies, etc. to any elevator maintenance contractor providing services to the Owner for this location.
 v. Equipment installed not meeting these requirements shall be removed and replaced with equipment as specified at no cost to the Owner.
 C. Signals and Fixtures
 i. All signals, fixtures and fasteners shall be vandal-resistant. Communications device shall be self-dialing, vandal resistant, push to talk. For all devices requiring key operation, Contractor shall provide Best Access Systems key switches that are compatible with Owner’s keying system.
 a. Signals and Fixtures basis of design is PTL Equipment MFG., Inc., Toccoa, GA.
3. EXECUTION
 A. Elevator Contractor Qualifications
 i. The Elevator Contractor shall be competent and experienced in the field of elevator installation, maintenance and modernization with a minimum of five years prior experience on comparable or more complex elevator equipment and currently have service contracts on similar specified equipment. The Elevator Contractor must demonstrate the ability to answer a service call within one hour of notification by telephone.
 B. Wiring Diagrams
 i. Contractor shall furnish three complete sets of full sized As-Built wiring diagrams at closeout. Contractor shall laminate and securely mount one complete set of the wiring diagrams on the wall of the elevator machine room.
 ii. All block diagrams including input and output signals and all diagnostic and troubleshooting guides of a technical level shall be included to completely adjust the entire elevator system.
 iii. Contractor shall provide two sets of “As-Built” wiring diagrams on compact disk with read-write access by AutoCAD 2007 or later.
 C. Parts Manuals
 i. Contractor shall furnish three sets of replacement parts manuals covering all of the equipment and components installed for this location.
 D. Maintenance Service
 i. Contractor shall furnish maintenance and callback service for twelve months after Material Completion, as part of the Cost of the Work or Bid. This service shall include adjustments, lubrication, cleaning, supplies and parts to keep the equipment in proper operation. Contractor shall provide a sign-in sheet to be dated and signed by the technician conducting the maintenance service. Overtime callbacks shall be included in maintenance service at no cost to the Owner.
 E. Warranty
 i. Contractor shall correct any defects not due to ordinary wear which may develop within twelve months from the date of Material Completion. Contractor and Elevator Contractor response time shall be one hour maximum from the time notification is made to Contractor.
1. GENERAL
 A. For UGA Athens Campus Only:
 Athens-Clarke County requires a fire suppression system in all parking decks. This is an interpretation by the Authority Having Jurisdiction and is non-negotiable.
1. **GENERAL**
 A. Related sections:
 i. 01 81 00 – Facility Performance Requirements
 ii. 22 07 00 – Plumbing Insulation
 iii. 22 10 00 – Plumbing Piping
 iv. 22 40 00 – Plumbing Fixtures
 v. 22 45 00 – Emergency Plumbing Fixtures
 vi. 22 66 53 – Laboratory Chemical-Waste and Vent Piping
 B. Design Professional shall provide riser diagrams for all plumbing systems.
 C. Domestic Water
 i. A shut-off valve shall be installed on all branch piping.
 ii. Hot water - provide re-circulating systems on all systems with dead-leg runs greater than 30 feet.
 D. Provide floor drains in all toilet rooms.
 E. Provide trap primers for all floor drains and floor sinks.
 F. Pressure reducing valves (PRVs)
 i. Shall be suitable for the application. Verify the prevailing mains water pressure and consult the manufacturer’s engineering department to verify the correct selection of the PRV provided irrespective of any model specified on the drawings.
 ii. Provide pressure gauge downstream and P/T ports up and downstream of every PRV.
 iii. Provide an upstream strainer if installed ahead of the PRV.
1. **GENERAL**
 A. Related sections:
 i. 22 00 00 – General Plumbing Requirements
 ii. 22 10 00 – Plumbing Piping
 B. All hot, cold, and tempered water piping shall be insulated.

2. **PRODUCTS**
 A. Insulation shall be preformed fiberglass pipe insulation with vapor barrier and an all service jacket.
1. GENERAL
 A. Related sections:
 i. 22 00 00 – General Plumbing Requirements
 ii. 22 07 00 – Plumbing Insulation
 iii. 22 40 00 – Plumbing Fixtures
 iv. 22 45 00 – Emergency Plumbing Fixtures

2. PRODUCTS
 A. Sanitary sewer piping, buried within 5 feet of building, above and below grade, shall be cast iron pipe with cast iron fittings. For some projects, PVC may be used in lieu of cast iron pipe; coordinate with Project Manager and seek variance, if appropriate.
 B. Water piping, buried within 5 feet of building, and below slab shall be ductile iron pipe with ductile iron or gray iron fittings.
 C. Water piping above grade shall be type “L” copper pipe.
 D. Acid resistant waste and vent piping shall be polypropylene or polyvinylidene Fluoride (PVDF).
 E. Fuel gas piping above grade shall be type “K” copper pipe or steel pipe, schedule 40.
UGA DESIGN & CONSTRUCTION STANDARDS
PLUMBING FIXTURES

22 40 00
PLUMBING FIXTURES

1. **GENERAL**
 A. Related sections:
 i. 22 00 00 – General Plumbing Requirements
 ii. 22 10 00 – Plumbing Piping
 iii. 06 61 00 – Solid Surface Fabrications

2. **PRODUCTS**
 A. Acceptable manufactures and/or products are:
 i. Lavatories – Sensor Type Faucets
 a. Equal to Sloan: ETF 600 (Hardwire)
 b. Equal to Sloan: SF2350 (Battery)
 c. Equal to Speakman Sensorflo: S-8701 (Battery)
 ii. Lavatories – Manual Type Faucets – Brass Body Only
 a. American Standard
 b. Delta
 c. Encore
 d. Kohler
 e. T&S Brass
 iii. Teaching Labs – Two Handle Faucets with Vacuum Breaker in Spout
 a. Chicago
 b. T&S Brass
 c. Water Saver
 iv. Urinals
 a. American Standard: Glenbrook 6205.010 (1.0 GPF)
 b. Crane: 7397 (1.0 GPF)
 c. Kohler: K-4960-ET (1.0 GPF)
 d. Kohler: K-4989-T (1.0 GPF)
 e. Equal to Kohler: K-4960-ET (0.5 GPF)
 f. Equal to Zurn: Z5738 (1/8 GPF)
 g. Equal to Zurn: Z5758 (1/8 GPF)
 v. Urinals – Sensor Flushometers
 a. Equal to Sloan: Optima
 b. Equal to Zurn: ZEG6003EV (For Pint Urinal)
 vi. Urinals – Manual Flushometers
 a. Equal to Sloan: 186-1 (1.0 GPF)
 b. Equal to Zurn: Z6003AV-WS1 (1.0 gallon)
 vii. Water Closets
 a. American Standard: AFWALL 3351.160 (1.6 GPF)
 b. American Standard: Madera 3451.001
 c. Crane: 3327 (1.6 GPF)
 d. Crane: 3455 (1.6 GPF)
 e. Kohler: K-4330 (1.6 GPF) (Wall)
 f. Kohler: K-4350 (1.6 GPF) (Floor)
 viii. Water Closets – Manual Flushmeters
 a. Sloan: 111XL (1.6 gallon)
b. Zurn: Z-6000AV-WSI (1.6 gallon)

B. For UGA Housing Only (New Construction) – Acceptable products:

i. Water Closet – Dorm Rooms: Floor mounted, tank type, two piece vitreous china toilet with bottom outlet, elongated bowl, universal height, SanaGloss finish, chrome trip lever, 1.28 gallons per flush (GPF), cotton color; equal to Toto CST744ELG(#01). Seat (Dorm Rooms): Commercial plastic elongated seat with closed front and cover. Seat and cover shall include soft close hinge system, cotton color; equal to Toto SS154 (#01).

ii. ADA Water Closet: ADA Toilets with roll up area on right side of fixture shall be provided with right hand chrome trip level; equal to Toto CST744ELRG.

iii. Water Closet – Public Areas: Floor mounted, flush valve type with bottom outlet, 1.28 GPF, elongated bowl and SanaGloss finish; equal to Toto CT705EN(G). Seat (Public Area): Elongated open front seat less cover; equal to Toto SC534. Flush Value shall be chrome plated brass, exposed, diaphragm type with vacuum breaker; Sloan Royal 111-1.28 or equal by Toto or Zurn.

iv. ADA Water Closet – Public Areas: Same as Water Closet – Public Areas except ADA toilets in public areas shall be ADA height: Toto CT705ELN(G). Flush handle shall be installed on wide roll up side of fixture.

v. Urinal: ADA compliant, wall hung, vitreous china, 1/8 GPF (pint), washout type flush action, 3/4” inlet top spud, 2” outlet, SanaGloss finish, cotton color; equal to Toto UT105UG(#01). Flush Valve: manual operated, exposed, 1/8 GPF flush (pint), chrome plated brass valve with vacuum breaker and adjustable tailpiece; Sloan 186-0.13 or equal by Toto or Zurn.

vi. Dorm Room Vanity Sink: Sink basin shall be integral counter mounted type. Faucet: ADA compliant, chrome plated brass, 4” center set single handle faucet with metal pop-up waste assembly, adjustable temperature limit stop and 1.5 GPM laminar flow aerator; equal to Moen Commercial 8432 with Moen 52608 aerator. Provide 20-gauge stainless steel sheet metal access panel at each vanity sink. Panel shall be sized to entirely conceal 9”x9” access cutout at rear of vanity cabinet and shall be attached with four (4) tamper proof screws.

vii. ADA Dorm Room Vanity Sink: Same as Dorm Room Vanity Sink except with offset tailpiece and insulation kit on piping below fixture. Access cover panel at ADA vanity sinks shall include paint grip finish and shall be painted with color as selected by Design Professional.

viii. Counter Lavatories – Public Areas: Fixture: 17”x13” (overall) 18 gauge, type 304 under mount stainless steel lavatory with undercoating and overflow assembly; equal to Elkay ELU1511 or equal by Just Manufacturer. Faucet: ADA compliant, chrome plated brass, 4” center set single handle faucet with grid drain waste assembly, adjustable temperature limit stop and 0.5 GPM aerator; equal to Moen Commercial 8434 with Moen 16350 aerator.

ix. Wall Hung Lavatory: ADA compliant, 21”x18” wall hung, vitreous china lavatory, 4” faucet centers, front overflow; equal to Toto LT307.4. Faucet: ADA compliant, chrome plated brass, 4” center set single handle faucet with grid drain waste assembly, adjustable temperature limit stop and 0.5 GPM aerator; equal to Moen Commercial 8434 with Moen 16350 aerator.

x. Dorm Showers: Enclosures shall include solid surface panels and shower pans. Provide 2” shower drain with stainless steel strainer and securing nut in each
shower compartment; equal to Zurn FD-2270. Valve and trim shall be manual pressure balancing mixing valve with check stops, lever handle and low flow showerhead (1.5 GPM). Equal to Moen 8350 valve with Moen 5276EP15 head. Provide with chrome plated arm and flange; equal to Moen A704. Provide Rinse Ace diverter between shower arm and head at each fixed showerhead; Rinse Ace WCRA-4050.

xi. ADA Dorm Shower: Enclosures shall include solid surface panels and shower pans as specified by the Architect. Provide 2” shower drain with stainless steel strainer and securing nut in each shower compartment; equal to Zurn FD-2270. Valve and trim shall be manual pressure balancing mixing valve with check stops, lever handle and low flow showerhead (1.5 GPM). Equal to Moen 8350 valve with Moen 5276EP15 head. Provide with chrome plated arm and flange; equal to Moen A704. Provide with ADA hand held showerhead (1.5 GPM) on slide bar; equal to Moen 52710 EP15. Diverter to control showers heads shall be provided; equal to Moen 8360. Provide Rinse Ace diverter between shower arm and head at each fixed showerhead; Rinse Ace WCRA-4050.

xii. Kitchen Sink – Apartment: 30”x18”x5-1/2” deep, two compartment, 18 gauge, under mount, type 304 stainless steel sink with drain opening in center rear of each compartment; equal to Elkay ELUHAD3118 or equal by Just Manufacturer. Provide basket strainers with tailpiece. Sink faucets shall be 8” center set with 8” spout with single handle faucet, ceramic disc cartridge with 1.5 GPM aerators, side spray. Equal to Moen 8707 series faucet with 52611 aerator. Provide 17-gauge chrome plated offset tailpiece and 17-gauge chrome plated cast brass p-trap with cleanout. Provide supplies to wall with wheel handle angle stops.

xiii. Kitchen Sink – Student Kitchen: 30” x 18” x 5-1/2” deep, two compartment, 18 gauge, under mount, type 304 stainless steel sink with drain opening in center rear of each compartment; equal to Elkay ELUHAD3118 or equal by Just Manufacturer. Provide basket strainers with tailpiece. Sink faucets shall be 8” center set with 8” spout with single handle faucet, ceramic disc cartridge with 1.5 GPM aerators, and no side spray. Equal to Moen 8701 series faucet with 52611 aerator. Provide 17-gauge chrome plated offset tailpiece and 17 gauge chrome plated cast brass p-trap with cleanout. Provide supplies to wall with wheel handle angle stops.

xiv. Kitchen Sink – Catering Kitchen: 30” x 18” x 5-1/2” deep, two compartment, 18 gauge, under mount, type 304 stainless steel sink with drain opening in center rear of each compartment; equal to Elkay ELUHAD3118 or equal by Just Manufacturer. Provide basket strainers with tailpiece. Sink faucets shall be 8” center set with 8” spout with single handle faucet, ceramic disc cartridge with 1.5 GPM aerators, and no side spray. Equal to Moen 8701 series faucet with 52611 aerator. Provide 17-gauge chrome plated offset tailpiece and 17 gauge chrome plated cast brass p-trap with cleanout. Provide supplies to wall with wheel handle angle stops.

xv. Service Sinks: 24”x24”x12” deep, floor type, terrazzo mop sink with stainless steel caps and wall guards; equal to Stern Williams SBC-1700-BP or comparable product by Fiat. Faucet shall be chrome plated brass and include vacuum breaker spout with hose thread outlet, pail hook, wall support, integral check
stops, service stops, lever handles with color indicators, 1/4 turn ceramic disc
cartridge. Equal to Moen 8124 series.

xvi. Laundry Sinks: 23”x21-1/2”x33-1/2” tall, molded stone floor mounted sink on
metal legs. Legs shall be white baked enamel angle legs that slip into molded
sockets with leveling devices. Equal to Fiat FL1 or equal by Mustee. Faucet shall
be deck mounted, chrome plated metal construction, 4” center set, 5-1/2”
spout, small lever style handles; Equal to Moen 74998.

xvii. Water Coolers: Wall mounted electric drinking fountain shall be complete
filtered bi-level dual fountain cooler and bottle filling station, ADA compliant, no
touch sensor activation on bottle filler, cooler shall have push bar activation,
water filter, flexible bubblers, refrigerated unit, 8 GPH of 50F water at 90F
ambient and 80F inlet water, lead free design; Equal to Elkay LZSTL8WSLK.
Provide 17 gauge, chrome plated cast brass P-trap with cleanout and flexible
1/2” supply with wheel handle angle valve.

xviii. Bath Tub at Apartment: Tub fixture to be 60”x30”x14” high enameled cast iron
tub with structural composite backing, slip resistant surface, integral apron;
Kohler K-715 or equal by American Standard or Toto. Valve and trim shall be
manual pressure balancing mixing valve with check stops, lever handle and low
flow showerhead (1.5 GPM). Equal to Moen 8350 value with equal to Moen
5276EP15 head. Provide with chrome plated arm and flange; equal to Moen
A704. Provide with ADA hand held showerhead (1.5 GPM) on slide bar; equal to
Moen 52710EP15. Diverter to control shower heads shall be provided; equal to
Moen 8360. Provide chrome plated brass tub spout equal to Moen 15856.
Provide Rinse Ace diverter between shower arm and head at each fixed shower
head; Rinse Ace WCRA-4050.
1. GENERAL

2. PRODUCTS
 A. Emergency Showers shall be equal to the Speakman Company – SE238 Life Saver Emergency Shower
 i. Emergency showers are third-party certified to meet or exceed the provisions of ANSI Z358.1-2009.
 B. Eye/Face Washes shall be equal to Guardian G1750P
1. GENERAL
 A. Related sections:
 i. 22 00 00 – General Plumbing Requirements
 ii. 22 07 00 – Plumbing Insulation
 iii. 22 40 00 – Plumbing Fixtures
 iv. 22 45 00 – Emergency Plumbing Fixtures
 v. 22 66 53 – Laboratory Chemical-Waste and Vent Piping

2. PRODUCTS
 A. Building water supply piping below grade shall be ductile iron pipe and ductile iron or
 gray iron fittings.
 B. Building water supply piping above grade shall be type “K” copper pipe.
 C. Building sanitary sewer piping above and below grade shall be cast iron with cast iron
 fittings.
1. **GENERAL**

 A. Related sections:
 i. 01 75 00 – Starting and Adjusting
 ii. 01 78 00 – Closeout Submittals
 iii. 01 81 00 – Facility Performance Requirements
 iv. 02 22 00 – Existing Conditions Assessment
 v. 23 05 19 – Meters and Gages for HVAC Piping
 vi. 23 05 23 – General-Duty Valves for HVAC Piping
 vii. 23 05 29 – Hangers and Supports for HVAC Piping and Equipment
 viii. 23 05 53 – Identification for HVAC Piping and Equipment
 ix. 23 05 93 – Testing, Adjusting and Balancing for HVAC
 x. 23 07 13 – Duct Insulation
 xi. 23 07 19 – HVAC Piping Insulation
 xii. 23 08 00 – Commissioning of HVAC
 xiii. 23 09 23 – Building Automation and Temperature Control System
 xiv. 23 20 00 – HVAC Piping and Pumps
 xv. 23 21 13 – Hydronic Piping
 xvi. 23 21 23 – Hydronic Pumps
 xvii. 23 22 13 – Steam and Condensate Heating Piping
 xviii. 23 22 16 – Steam and Condensate Heating Piping Specialties
 xix. 23 25 00 – HVAC Water Treatment
 xx. 23 31 13 – Metal Ducts
 xxi. 23 33 13 – Dampers
 xxii. 23 38 16 – Fume Hoods
 xxiii. 23 64 16.13 – Air-Cooled Centrifugal Water Chillers
 xxiv. 23 64 16.16 – Water-Cooled Centrifugal Water Chillers
 xxv. 23 65 00 – Cooling Towers
 xxvi. 23 73 00 – Indoor Central-Station Air-Handling Units
 xxvii. 33 00 00 – General Utilities Requirements
 xxviii. 33 60 00 – Hydronic and Steam Energy Distribution

 B. HVAC Design
 i. On schedules specify basis of design by make and model including all options. Design Professional shall verify all model numbers and determine if products are still currently in production and will have guaranteed manufacturer’s support for at least 10 years.
 ii. All equipment on design documents shall have unique ID including VAV terminals. This ID shall be maintained for all pipe and duct layout shop drawings and controls diagrams and graphics.
 iii. Design documents shall include a project specific owner approved Training Plan. The CxA, if employed on the project, shall assist in the preparation of the training plan.
 iv. Designers shall determine and specify R-values for AHUs, duct and pipe insulation thicknesses to prevent condensation on all cold surfaces inside the
building spaces such as un-air-conditioned mechanical rooms, attic and, crawl spaces under all operating conditions.

v. All equipment specified shall be suitable for the anticipated ambient conditions; electronic equipment such as temperature controls, VSDs, etc., in particular, shall be rated (or de-rated) to suit.

vi. All outdoor air intakes shall have separate minimum outdoor air damper sections.

vii. Check fan selection to insure fan can unload properly and maintain stability under the anticipated operating range. Fan system curves on VAV systems shall have the zero flow point at the set-point of the duct static controller, typically about 1.25” – 1.5”.

viii. Select direct drive fans with VSD for all applications. Applications where use of a VSD shall require an approved variance. Belt drives using ‘cogged’ belts may be permitted through the variance process.

ix. The curb on all roof mounted exhaust fans shall be sealed to eliminate induction of air.

x. Fan static pressure calculations shall be based on filter 50% loaded conditions, and take into account, system effect, internal cabinet losses, external duct losses, and all internal losses due to coils, dampers, humidifiers, etc. Confirm all losses with basis of design manufacturer to ensure motors/fans are properly sized.

xi. All belt drive fan motors shall be selected so the BHP at design does not exceed 85% of the motor nameplate Hp.

xii. If the Design Professional is considering the use of air-side or water-side economizers, this shall be discussed with the Project Manager early in the design process and written approval obtained before incorporating into the design.

C. Design for Access
 i. AHUs are not allowed to be placed above a ceiling.
 ii. Mechanical rooms at grade shall have exterior doors to grade level; mechanical drawings shall indicate path of travel for removal and replacement of the largest piece of equipment located in mechanical rooms, attic spaces, etc.
 iii. Area required for coil pulls shall be shown to scale on drawings.
 iv. Access doors/panels - shall be hinged, camlocked (not fixed by screws/bolts), airtight on ducts and AHUs; provide access to all devices with duct probes such as duct static sensors, humidifier manifolds, smoke detector probes, AFMS, etc.
 v. VAV terminals, controllers and water valves shall be easily accessible. Locate in hallways or at entry to space; access door/panel shall be provided upstream and downstream of re-heat coils to allow easy cleaning of coil.
 vi. Access ladders shall be safe, shall not be vertical fixed to wall and shall allow maintenance personnel to scale with ease while carrying toolbox, filter, box or similar.
1. **GENERAL**
 A. Related sections:
 i. 23 00 00 – General Mechanical Requirements (HVAC)
 ii. 23 09 00 – Instrumentation and Control for HVAC
 iii. 33 00 00 – Utilities
 B. Utilities: All utilities serving the building/system shall be metered. Design professional shall discuss metering requirements with UGA.
 i. Steam – 100psi
 ii. Condensate
 a. Water make-up
 b. Bleed-off
 iii. Water
 iv. Gas
 v. Chilled Water
 C. The intent of the metering is to allow accurate measurement of the building systems energy consumption for the purpose of monitoring and managing efficient energy use.

2. **PRODUCTS**
 A. Chilled water flow and btu meter shall be have matched 1000 ohm resistance temperature detectors and be equal to ultrasonic flowmeter Flexim FLUXUS ADM 7x07 or GE Panametrics.
 B. Steam flowmeter shall have a 100:1 turn down; basis of design shall be Gilflo ILVA. A properly sized steam separator shall be provided upstream of a steam flow meter.

3. **EXECUTION**
 A. Meters shall be installed strictly in accordance with the manufacturer’s installation instructions and recommendations. A factory trained and authorized representative shall inspect and verify that meters are installed correctly and that the read-outs are accurate. They shall also be verified by the TAB subcontractor and CxA.
1. **GENERAL**
 A. Related section:
 i. 27 00 00 – General Mechanical Requirements (HVAC)
 B. Isolation Valves
 i. Provide isolation valves for each
 a. Independent item of equipment and fixture.
 b. Floor, bathroom, laboratory, mechanical room.
 1) If floor area is greater than 5,000 sq. ft., divide floor area into
 sections of not greater than 5,000 sq. ft. and provide isolation
 valve for each section.
 ii. Locate isolation valves outside the coil pull line to allow coil removal without
 disruption of hydronic service to other equipment and to keep piping
 disassembly to a minimum.
 C. Coil Control Valves
 i. Locate coil control valve clusters to allow easy visual (operator position) and
 maintenance access to components and allow free opening of access doors,
 filter removal, etc.
 ii. Design Professional shall show control valve locations on the drawings (plan
 view and at least one section/elevation).
 D. All components on PRVs, control valve assemblies, etc., excluding the control valve
 itself, shall be full line size.

2. **PRODUCTS**
 A. Hydronic systems control valves
 i. Shall be 2-way modulating.
 ii. 3-way valves are not allowed.
 B. Valves located 6 feet above the floor shall be chain operated.
 C. Valves on plumbing, heating hot water, chilled water and condenser water systems shall
 be quarter turn ball or butterfly valves; Gate valves are not allowed.
 D. Motor operated butterfly valves shall have a lug style body, shall have the double-offset
 design, have field-replaceable seats and shall be equal to Keystone K-LOK® Series 36.
 E. Butterfly valves utilized for manual isolation shall have lug style body, shall have
 stainless steel stem and disc, shall provide bubble-tight shut-off up to 250 psi, and shall
 be equal to Keystone Figure 222.
 F. Steam
 i. Shut-off isolation valves, as opposed to control valves, used for steam service
 shall be gate valves or triple offset, butterfly valves.
 a. Triple off-set butterfly valves shall be double-flanged, bi-directional,
 single-piece valve and stem, zero-leakage, shall have field-replaceable
 seats, and shall be the triple-offset butterfly design.
 b. The valve shall be provided with a manual operated hand wheel and
 associated gear operated shaft to allow for slow opening of valve.
 c. The basis of design for steam service isolation valves shall be Vanessa
 Series 30,000 valve.
ii. Ball valves shall not be used for steam, steam condensate or pumped steam condensate.
23 05 29
HANGERS & SUPPORTS FOR HVAC PIPING & EQUIPMENT

1. GENERAL
 A. Related sections:
 i. 23 07 13 – Duct Insulation
 ii. 27 00 00 – General Mechanical Requirements
 B. Provide 4” high minimum concrete pads for all floor mounted equipment.
 C. Equipment housing cooling coils shall be provided with additional base frames as necessary to allow installation of condensate drain traps of adequate depth.
 D. Refer to 23 07 13 Duct Insulation for specific requirement regarding the trapeze hanger insulation details and requirements.
1. **GENERAL**

 A. Related sections:
 i. 23 00 00 – General Mechanical Requirements

 B. Pipeline and valve identification on all new work shall comply with ANSI 13.1 (latest edition – to be identified in documents). The contractor shall submit ANSI color-coding and identification for all services with equipment submittals.

 C. The Contractor shall provide identification labels per this section for all unidentified existing valves and pipes that are within the renovation area that are being reused.

<table>
<thead>
<tr>
<th>PIPE COLOR</th>
<th>LABEL COLOR</th>
<th>PIPE COLOR</th>
<th>FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILLED WATER SUPPLY</td>
<td>P.I.C. PVC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHILLED WATER RETURN</td>
<td>P.I.C. PVC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONDENSER WATER SUPPLY</td>
<td>P.I.C. PVC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONDENSER WATER RETURN</td>
<td>P.I.C. PVC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEATING WATER SUPPLY</td>
<td>P.I.C. PVC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEATING WATER RETURN</td>
<td>P.I.C. PVC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH/MEDIUM/LOW PRESSURE STEAM</td>
<td>ALUMINUM JACKETED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONDENSATE RETURN</td>
<td>ALUMINUM JACKETED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH/MEDIUM/LOW PRESSURE OR PUMPED CONDENSATE</td>
<td>ALUMINUM JACKETED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOMESTIC COLD WATER</td>
<td>P.I.C. PVC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOMESTIC HOT WATER</td>
<td>P.I.C. PVC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMPERED WATER</td>
<td>P.I.C. PVC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NON-POTABLE WATER</td>
<td>P.I.C. PVC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAIN</td>
<td>PAINTED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REFRIGERANT VENT</td>
<td>PAINTED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SANITARY</td>
<td>PAINTED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEMICAL FEED</td>
<td>PAINTED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NATURAL GAS</td>
<td>PAINTED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIRE PROTECTION</td>
<td>PAINTED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NONE</td>
<td>NITROGEN N₂</td>
<td>Per NFPA 95.5.1.11</td>
<td></td>
</tr>
<tr>
<td>NONE</td>
<td>OXYGEN O₂</td>
<td>Per NFPA 95.5.1.11</td>
<td></td>
</tr>
<tr>
<td>NONE</td>
<td>NITROUS OXIDE N₂O</td>
<td>Per NFPA 95.5.1.11</td>
<td></td>
</tr>
<tr>
<td>NONE</td>
<td>COMPRRESSED AIR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. **GENERAL**

A. Related sections:

i. 01 32 16 – Construction Progress Schedule

ii. 01 75 00 – Starting and Adjusting

iii. 01 78 00 – Closeout Submittals

iv. 23 00 00 – HVAC

v. 23 08 00 – Commissioning of HVAC

vi. 23 31 13 – Metal Ducts

B. The Design Professional shall include in the TAB specification any special control sequences that will require the assistance of the TAB subcontractor. For example, this may include fan tracking, economizers, life safety systems, etc.

C. A balancing plan prepared by the TAB subcontractor shall cover balancing techniques and testing procedures for all individual systems and equipment as well as for the overall system. The selected TAB subcontractor shall submit the balancing plan to the Contractor who will then submit it to the Design Professional and Project Manager. The balancing plan shall be submitted at the same time as mechanical submittal data. The TAB subcontractor shall follow up with the Contractor to ensure that the balancing plan has been properly reviewed and incorporated within the construction schedule. The balancing plan shall include:

i. A list of the test instruments that are planned to be used in the testing and balancing process.

ii. A description of the testing procedure for each HVAC system to be tested. List all of the equipment to be tested for each system and the techniques to be used for the testing procedure. Standard forms used by the TAB subcontractor shall be completed to reflect all equipment and systems identified by system and/or model number specific to the project. Blank, “sample” forms are unacceptable.

iii. A list of the all subcontractors that are required to assist with the testing and balancing process along with the expectations of each of the contractors to successfully complete a total system balance. Most importantly, the expectations of the temperature controls contractor shall be listed. This shall include provision of automation software for balancing, timely automation system access, and the development of global overrides for system maximum performance testing.

iv. An outline of the required construction completeness prior to starting the testing and balancing process.

v. A realistic estimate of the time required to complete the testing and balancing process; the plan shall describe in detail the required time to complete balance of sub-systems and total system balance. The Contractor shall recognize that the balancing process is sequential and not a process that can be shortened by simply putting more technicians on the project to complete the process faster. Buildings with direct digital control systems require a great deal of the testing and balancing process to be performed through adjustments to the HVAC systems via the automation/control system. Network access limitations and/or control software may prevent more than one operator from communicating.
with the automation/control system at a time. This makes it inefficient to have too many balancing technicians on a single project if the majority of the adjustments can only be made through one computer terminal.

vi. A listing of the necessary uninterrupted accessibility to the building to completely test HVAC equipment and sub systems.

vii. The Contractor shall allow time in the balancing plan schedule to allow the TAB subcontractor to address any issues in the design or installation, which prevents a system from operating at design performance. The Contractor shall take the time for resolution of these issues by the responsible party into account in the balancing schedule. A ‘contingency’ of an additional week or two should be incorporated into the balancing plan schedule to accommodate additional time required for the responsible party to correct any minor issues preventing design performance of the building. The TAB final report shall be scheduled to be completed three weeks prior to Material Completion.

viii. With the balancing plan the TAB subcontractor shall submit a sample reporting form that includes project specific information with the specified AHU, pumps, etc. by item number identified on the drawings. It shall show intended location of duct traverses, all units that will have static pressure profiles, AFMS, etc. The final completed version shall also include manufacturer and model numbers.

D. Building accessibility during balancing: The Contractor shall provide the TAB subcontractor with uninterrupted access to all areas of the building. Large HVAC systems may require the access to the same area several times throughout the balancing process. Finishing processes of the building construction such as laying carpet and tile flooring, waxing floors, construction cleaning, and fire alarm testing that require the HVAC systems to be shut down shall be identified in the balancing plan to inform the Contractor of possible conflicts who shall attempt to schedule the testing and balancing process around them. Some building accessibility issues to address in the balancing plan include the following:

i. Flooring work, such as carpet laying and tiling, must be performed either before or after the testing and balancing process for a particular system serving the area in which the flooring work is to be done. If the completed flooring will restrict the use of boom lifts, the testing and balancing of the system serving that area shall be completed before the floor work if the HVAC system components are inaccessible by ladder.

ii. Final building cleaning that would prevent further access of contractors shall be delayed until the testing and balancing is completed.

iii. If fire alarm testing will affect the HVAC system, the balancing contractor should be notified in advance when fire alarm testing is scheduled. For example, closing fire dampers or shutting down air handling units can disrupt total system balancing.

2. PRODUCTS
 A. Provide all instruments, charts, materials, and equipment required to develop a complete TAB report.

3. EXECUTION
 A. The TAB subcontractor shall, unless approved otherwise by UGA, be an Associated Air Balance Council (AABC) or National Environmental Balancing Bureau (NEBB) certified member and the TAB Work shall be performed by an AABC or NEBB certified test and
balance technician.

B. Acceptable TAB firms:
 i. Air Analysis of Atlanta
 ii. Research Air Flo
 iii. Thomas Balancing of Macon
 iv. Test and Balance Corporation (TABC)

C. As a minimum, the TAB subcontractor shall test, adjust and balance:
 i. Each supply air, return, exhaust and outdoor air distribution system, including operation and adjustment of all manual and automatic air volume control dampers, particularly outdoor air dampers, including static pressure profile across AHUs and duct pitot traverses. Final measurements shall be made after balancing at outlets/inlets and main duct traverses to determine and record the amount of leakage.
 ii. Each hydronic system.
 iii. Each control system including calibration of all control elements and check operation including all interlocks.
 iv. Overall air balance in building and individual spaces.
 v. Adjust systems to optimize energy use; adjust air distribution systems for fan pressure optimization to control system static to lowest level while maintaining flow requirements in all zones; adjust hydronic systems to optimize pump pressure to force at least one valve to full flow. Document all index runs.

B. Measure and record the dry bulb and wet bulb temperatures, humidities, and pressures in all spaces served when the outside temperature is above 85 degrees (summer TAB) and below 50 degrees of (winter TAB) record outside dry bulb and wet bulb.

C. Reports shall include manufacturer’s performance curves, tables and graphs with specified design and actual, measured/"as-balanced" duty points marked up on these. System effect on AHUs shall be measured, recorded and plotted on the fan duty curve, The curves shall clearly show efficiency, brake horsepower, speeds, etc. for design and actual.

D. The TAB subcontractor shall check the controls system operation for proper calibration and operation and a report on the operation and adjustment shall be submitted to the owner. The TAB subcontractor shall verify by check measurements in the field to ensure that the controls indication is accurate; every safety and alarm interlock shall be checked. The interface with the building fire alarm system shall be checked. Check and provide statement that all smoke detectors are operating properly and are installed in accordance with the manufacturer’s installation instructions and recommendations. Sensor shall be checked for proper location, space temperature sensors shall be free from drafts, heat sources and other factors that can affect the accuracy of the control system.

E. The Contractor and the TAB subcontractor shall check all the systems operating together, in all modes of operation, to ensure that the air-conditioned spaces are under an overall positive pressure; shall check and report that the building envelope is properly sealed and uncontrolled air leakage into the building does not occur; shall check that return and exhaust ducts located outside the air-conditioned space are sealed; shall check supply air ducts for leaks to ensure that cold air leakage does not cause condensation on duct, equipment and building surfaces above the ceiling (during summer TAB); shall check return and exhaust grilles for proper seal at duct connections.
to ensure that air does not enter these ducts through un-air-conditioned walls, chases, etc.

F. The Contractor and the TAB subcontractor shall, immediately following award of the contract, review the proposed systems installations drawings and determine all measuring and balancing devices required for proper test and balance of the systems are specified and sized correctly. These shall include, but shall not be limited to, manual air volume balancing dampers, etc. the contractor shall be responsible for providing these in the locations recommended by the TAB subcontractor, in addition to any shown on the drawings. These devices shall be provided under the Contract. Check that duct layouts allows TAB subcontractor to do duct pitot traverses to determine overall air flows. Any factors that prevent the proper TAB of the systems shall be brought to Project Manager’s attention for a decision prior to proceeding with the Work.

G. The TAB subcontractor shall check refrigeration lines for compliance with the equipment manufacturer’s installation instructions and recommendations shall check superheat settings on all systems with lines longer than 50 feet.

H. The TAB subcontractor shall test condensate drains and drain pans for proper drainage under operating conditions and that all condensate drains from pans.

I. Instruments used for testing and balancing shall have been calibrated within a period of six months of the time of the testing and balancing and such instruments shall be checked for accuracy prior to start of work. Submit verification of certification to the owner; submit purchase invoices for all instruments identified as “new”.

J. Three copies of the complete test report shall be submitted to the Design Professional and the Project Manager prior to Material Completion of the project plus at least one complete copy in searchable electronic format.

K. Balancing and Adjustment after Final Completion: After the building is accepted and occupied, and after testing and preliminary balancing are completed, send qualified personnel, at no additional cost, to the building for not less than one period during summer and one period during winter, observer temperatures throughout conditioned spaces, consult with Project Manager as to need for additional balancing or adjustment, then perform such work as indicated. Schedule these visits at a time agreeable to the Project Manager during December through February for heating, and July through August for cooling.

L. The TAB report shall include a list of all deficiencies found during the preliminary testing and a contractor response indicating remedial action taken for each item. The TAB work shall not be deemed complete without this report.

M. The TAB final report shall be submitted to the Design Professional and the Project Manager at least three weeks prior to Material Completion.
1. **GENERAL**
 A. Related sections:
 i. 27 00 00 – General Mechanical Requirements
 ii. 27 05 29 – Hangers and Supports for HVAC Piping and Equipment
 B. UGA does not allow the metal duct to be penetrated by either the duct insulation fasteners or the fasteners associated with hanging the ductwork. Refer to the Trapeze Hanger Insulation Detail included in this section.
 C. If sound attenuation is a project requirement, the method to be utilized shall be approved by the Project Manager in writing.

2. **PRODUCTS**
 A. Duct insulation for interior location:
 i. All ductwork exposed to ambient conditions, including, but not limited to, in crawlspaces and attics and ductwork located in mechanical rooms shall be insulated with minimum 2" thick board type insulation (R9, installed) having a minimum density of 6 lbs./cu. ft.
 B. Duct insulation for exterior location:
 i. Insulation on round, oval or curved ducting located outside the building shall be minimum 6 lbs./cu. ft. board with fibers arranged perpendicular to the board surface to allow insulation to closely fit the curved surfaces. Pre-score rigid insulation board where necessary to conform to curved surfaces. The insulation shall be faced with an all-purpose Kraft paper bonded to aluminum foil. Insulation basis of design is Johns Manville 817 Series Spin Glass or approved equal.
 C. Outer weatherproofing covering (in mechanical rooms and where subject to ambient conditions):
 i. The flexible membrane basis of design shall be five layer, aluminum polyester laminate; self-adhering 8mil membrane, VentureClad or approved equal.
 ii. The color shall be aluminum or white as required by UGA (verify color with Project Manager).
 D. Internal duct liner anywhere downstream of filter banks, including inside equipment such as AHU’s, FCU’s, VAV terminals, etc. is prohibited.

3. **EXECUTION**
 A. General
 i. Apply the insulation on clean, dry surfaces. Observe manufacturer’s recommended temperature limits during application. The ducts must be sealed and leak tested before application of the insulation. The Contractor and the insulator shall inspect ducts to verify that the ducts are properly sealed prior to insulating and shall review duct leakage test reports provided by the TAB subcontractor where duct leakage testing is specified.
 ii. All insulation joints shall be firmly butted and sealed. Adhere insulation to ducts with 100% coverage of fire retardant manufacturer approved adhesive Foster 85-15;
 iii. For ducts over 24 inches wide, impale insulation on the bottom of the ducts on metal pins, on maximum 12 inch centers, welded to the duct and secure with
speed washers. Minimum compression is to be used to assure firm fit and still maintain thermal performance.

iv. Vapor retarders should overlap a minimum of 2” (51 mm) at all seams and be sealed with appropriate pressure-sensitive tape and mastic Foster 30-65. When applying pressure-sensitive tapes, the tape must be firmly rubbed with a proper sealing tool to make sure the closure is secure. Follow tape manufacturer's instructions and recommendations.

v. Fasteners shall be located a maximum of 3” (76 mm) from each edge and spaced no greater than 12” (305 mm) on center.

vi. Prior to application of the outer weather proofing layer all penetrations and facing damage shall be repaired with tapes or mastic Foster 30-65 with a minimum of 2” (51 mm) overlap. Tapes should be applied using a sealing tool and moving pressure.

vii. The insulation on the top surface of the ductwork shall be tapered for positive drainage. Maintain specified minimum thickness as at the low side.

viii. Insulation shall be installed, sealed and vapor-proofed, continuous through penetrations. Seal penetrations to outside of insulation as required.

B. Exterior weatherproof covering:

i. Apply a commercially available flexible, self-adhering, aluminum waterproofing system/product specifically made for the application, installed in accordance with the manufacturer’s installation instructions and recommendations to the insulated duct and pipe to provide a vapor barrier, water and weather seal.

ii. The insulation shall be secured prior to applying the waterproofing layer which shall not be used as a means of securing the underlying materials.

iii. Observe manufacturer’s recommended temperature limits during application.

iv. Apply the material to shed water over the laps. Sheets shall be continuous on underside of ducts.

v. The insulation sub-contractor shall inspect the outer coverings after the TAB work is complete and shall plug and seal all tappings holes found with sealant, insulation and outer covering.

vi. After completion of final inspection adhere sheets of the outer covering over access doors and around other duct penetrations/ openings.
TRAPEZE HANGER INSULATION DETAIL

SCHEMATIC DRAWINGS FOR GENERAL REFERENCE ONLY

- **EXTERNAL DUCT WRAP INSULATION**
- **EXTERNALLY INSULATED DUCT**
- **WRAP VAPOR-PROOF FACING BEYOND POLYSOCYANURATE BOARD AND TAPE SECURELY.**
- **POLYSOCYANURATE BOARD INSULATION, SAME THICKNESS AS FLEXIBLE DUCT WRAP INSULATION**
1. GENERAL
 A. Related sections:
 i. 23 00 00 – General Mechanical Requirements (HVAC)

2. PRODUCTS
 A. Heating hot water piping insulation inside buildings shall be fiberglass with vapor barrier all service jacket.
 B. Chilled water pipe insulation inside buildings shall be equal to closed cell ITW Trymer Green phenolic 2.5 lb/cu ft (0.15 Btu·in./hr·ft²·°F@75°F mean) with Saran 560 or Pittsburgh Corning foam glass with approved wrap. For renovations, when an existing cold line to be modified has fiberglass insulation, patching with fiberglass insulation may be allowed with owner’s approval.
 C. On fittings/elbows, apply vapor retarder coating equal to Foster 30-80 AF with reinforcing mesh Foster 42-24 Mast a Fab; with 9x8 opening/ sq. inch.
 D. All seams, butted joints, and terminations shall be sealed with a product equal to Foster 95-50 and vapor proofed with a product equal to Foster 30- 80 AF meeting ASTM D5590 before the piping ‘goes cold’ in such a manner to prevent any moisture laden air getting in the insulation system.
 E. Exterior above grade insulation may be equal to Trymer PIR, 2.5 lb/cu ft, (25/450 flame spread/smoke developed) wrapped and coated as above.
 F. Limited use of flexible closed cell insulation similar to “Armaflex” may be permitted with owner approval at piping at valve clusters, etc., provided no condensation occurs on cold surfaces.

3. EXECUTION
 A. Chilled water pipe insulation shall be sealed (“tied down”) to pipe every 40 ft, 3 ft from equipment, up and downstream of valve clusters, etc. and vapor proofed.
 B. Pipe insulation and vapor proofing shall be continuous through all building penetrations.
 C. Non-compressible insulation inserts, extending beyond hanger, wrapped and vapor proofed before hangers is ‘closed’, shall be installed at hangers in such a way that the insulation and vapor proofing is continuous through the hanger.
INSULATION TIE DOWN/SEAL OFF POINTS FOR CHILLED WATER PIPE DETAIL

SCHEMATIC DRAWINGS FOR GENERAL REFERENCE ONLY

NOTE:
1. Identify all "tie down" including on straight runs of pipe with 4" wide plastic adhesive bands taped all around and marked "vapor proceed to pipe" provide tie-downs every 31 feet on straight runs of pipe.
2. Do not damage vapor barrier/tie down on existing work when adding new work. Repair any damage done.
3. Provide insulation on all instruments, valves, props, etc. plus to prevent condensation dripping. Insulation may be "airwaflex" or other approved flexible cellular insulation fixed with manufacturer's approved adhesive or "no drip" tape neatly applied. The cellular insulation shall be formed into a "cup" of suitable diameter to fit over the valve, pipe, etc. and taped to the surface of the pipe insulation.
4. See note 3 (typ.)

GLEED JOINTS
CELLULAR INSULATION
TAPE ALL AROUND

CONTINUE SPECIFIED INSULATION ACROSS VALVE FITTING

SEE NOTE 3 (typ.)

VAPOR PROOFING

VALVE CLUSTER INSULATION
PIPE INSULATION

INSULATION TIE DOWN AT EQUIPMENT COLD PIPING

INSULATION TIE DOWN AT FLANGES, VALVES & LININGS COLD PIPING

NOTE 1 (typ.)
8 X D
WR. 18"
1. GENERAL

 A. Related sections:

 i. 01 75 00 – Starting and Adjusting
 ii. 01 78 00 – Closeout Submittals
 iii. 01 81 00 – Facility Performance Requirements
 iv. 02 22 00 – Existing Conditions Assessment
 v. 23 00 00 – General Mechanical Requirements (HVAC)
 vi. 23 05 19 – Meters and Gages for HVAC Piping
 vii. 23 05 23 – General-Duty Valves for HVAC Piping
 viii. 23 05 29 – Hangers and Supports for HVAC Piping and Equipment
 ix. 23 05 53 – Identification for HVAC Piping and Equipment
 x. 23 05 93 – Testing, Adjusting and Balancing for HVAC
 xi. 23 07 13 – Duct Insulation
 xii. 23 07 19 – HVAC Piping Insulation
 xiii. 23 09 23 – Building Automation and Temperature Control System
 xiv. 23 20 00 – HVAC Piping and Pumps
 xv. 23 21 13 – Hydronic Piping
 xvi. 23 21 23 – Hydronic Pumps
 xvii. 23 22 13 – Steam and Condensate Heating Piping
 xviii. 23 22 16 – Steam and Condensate Heating Piping Specialties
 xix. 23 25 00 – HVAC Water Treatment
 xx. 23 31 13 – Metal Ducts
 xxi. 23 33 13 – Dampers
 xxii. 23 38 16 – Fume Hoods
 xxiii. 23 64 16.13 – Air-Cooled Centrifugal Water Chillers
 xxiv. 23 64 16.16 – Water-Cooled Centrifugal Water Chillers
 xxv. 23 65 00 – Cooling Towers
 xxvi. 23 73 00 – Indoor Central-Station Air-Handling Units

 B. Commissioning is a systematic process of ensuring that all building systems perform interactively according to the design intent and the Owner’s performance requirements. This is achieved by beginning in the design phase and documenting design intent. Commissioning shall include acceptance and the warranty period with actual verification of performance. The commissioning process shall encompass and coordinate system documentation, equipment startup, control system calibration, testing and balancing, performance testing and training. Commissioning during the construction phase is intended to achieve the following specific objectives according to the Contract Documents:

 i. Verify that applicable equipment and systems are installed according to the manufacturer’s recommendations and to industry accepted minimum standards and that they receive adequate operational checkout by installing Contractors.
 ii. Verify and document proper performance of equipment and systems
 iii. Verify that O&M documentation provided by the Contractor is complete and comprehensive.
 iv. Verify that the Owner’s operating personnel are adequately trained.
C. The commissioning process does not take away from or reduce the responsibility of the Design Professionals or installing Contractors to provide a finished and fully functioning product.

D. Definitions and Abbreviations:

Acceptance Phase
Phase of construction after startup and initial checkout when functional performance tests, O&M documentation review and training occurs.

Approval
Acceptance that a piece of equipment or system has been properly installed and is functioning in the tested modes according to the Contract Documents.

Basis of Design
The basis of design is the documentation of the primary thought processes and assumptions behind design decisions that were made to meet the design intent. The basis of design describes the systems, components, conditions and methods chosen to meet the intent. Some reiterating of the design intent may be included.

Commissioning (CxA or CA)
Commissioning Authority (CxA or CA)
An independent agent, not otherwise associated with the Design Professional team members or the Contractor, though he/she may be hired as a subcontractor to them. The CA directs and coordinates the day-to-day commissioning activities. The CA does not take an oversight role like the Project Manager. The CA shall report directly to the Project Manager.

Commissioning Plan (Cx Plan)
An overall plan, developed before or after bidding, that provides the structure, schedule and coordination planning for the commissioning process.

Control Contractor (CC)

Control System
The central building energy management control system.

Data-Logging
Monitoring flows, currents, status, pressures, etc. of equipment using stand-alone data-loggers separate from the control system.

Deferred Functional Tests
FPTs that are performed later, after substantial completion, due to partial occupancy, equipment, seasonal requirements, design or other site conditions that disallow the test from being performed.

Deficiency
A condition in the installation or function of a component, piece of equipment or system that is not in compliance with the Contract Documents (that is, does not perform properly or is not complying with the design intent).

Design Intent
A dynamic document that provides the explanation of the ideas, concepts and criteria that are considered to be very important to the owner. It is initially the outcome of the programming and conceptual design phases.

Design Narrative or Design Documentation
Sections of either the Design Intent or Basis of Design.

Electrical Contractor (EC) (Works for Contractor)
Factory Testing
Testing of equipment on-site or at the factory by factory personnel with an Owner’s representative present.

Functional Performance Test (FPT)
Test of the dynamic function and operation of equipment and systems using manual (direct observation) or monitoring methods. Functional testing is the dynamic testing of systems (rather than just components) under full operation (e.g., the chiller pump is tested interactively with the chiller functions to see if the pump ramps up and down to maintain the differential pressure setpoint). Systems are tested under various modes, such as during low cooling or heating loads, high loads, component failures, unoccupied, varying outside air temperatures, fire alarm, power failure, etc. The systems are run through all the control system’s sequences of operation and components are verified to be responding as the sequences state. Traditional air or water test and balancing (TAB) is not functional testing, in the commissioning sense of the word. TAB’s primary work is setting up the system flows and pressures as specified, while functional testing is verifying that which has already been set up. The commissioning authority develops the functional test procedures in a sequential written form, coordinates, oversees and documents the actual testing, which is usually performed by the installing Contractor or vendor. FPTs are performed after pre-functional checklists and startup is complete.

Indirect Indicators
Indicators of a response or condition, such as a reading from a control system screen reporting a damper to be 100% closed.

Manual Test
Using hand-held instruments, immediate control system readouts or direct observation to verify performance (contrasted to analyzing monitored data taken over time to make the “observation”).

Mechanical Contractor (MC) (Works for Contractor) Monitoring
The recording of parameters (flow, current, status, pressure, etc.) of equipment operation using data-loggers or the trending capabilities of control systems.

Non-Compliance
See Deficiency.

Non-Conformance
See Deficiency.

Over-Written Value
Writing over a sensor value in the control system to see the response of a system (e.g., changing the outside air temperature value from 50°F to 75°F to verify economizer operation). See also “Simulated Signal.”

Owner-Contracted Tests
Tests paid for by the Owner outside the Contractor’s contract and for which the CA does not oversee. These tests will not be repeated during functional tests if properly documented.

Phased Commissioning
Commissioning that is completed in phases (by floors, for example) due to the size of the structure or other scheduling issues, in order minimize the total
construction time.

Pre-functional Checklist (PFC)
A list of items to inspect and elementary component tests to conduct to verify proper installation of equipment, provided by the CA to the Sub. Pre-functional checklists are primarily static inspections and procedures to prepare the equipment or system for initial operation (e.g., belt tension, oil levels OK, labels affixed, gages in place, sensors calibrated, etc.). However, some pre-functional checklist items entail simple testing of the function of a component, a piece of equipment or system (such as measuring the voltage imbalance on a three phase pump motor of a chiller system). The word pre-functional refers to before functional testing. Pre-functional checklists augment and are combined with the manufacturer's start-up checklist. Even without a commissioning process, Contractors typically perform some, if not many, of the pre-functional checklist items a commissioning authority will recommend. However, few Contractors document in writing the execution of these checklist items. Therefore, for most equipment, the Contractors execute the checklists on their own. The commissioning authority only requires that the procedures be documented in writing, and does not witness much of the pre-functional check listing, except for larger or more critical pieces of equipment.

Sampling
Functionally testing only a fraction of the total number of identical or near identical pieces of equipment. Refer to Section 18000, Part 3.6, F for details.

Seasonal Performance Tests
FPT that are deferred until the system(s) will experience conditions closer to their design conditions.

Simulated Condition
Condition that is created for the purpose of testing the response of a system (e.g., applying a hair blower to a space sensor to see the response in a VAV box).

Simulated Signal
Disconnecting a sensor and using a signal generator to send an amperage, resistance or pressure to the transducer and DDC system to simulate a sensor value.

Specifications
The construction specifications of the Contract Documents.

Startup
The initial starting or activating of dynamic equipment, including executing pre-functional checklists.

Subs
The subcontractors to the Contractor who provide and install building components and systems.

Test Procedures
The step-by-step process which must be executed to fulfill the test requirements. The test procedures are developed by the CA.

Test Requirements
Requirements specifying what modes and functions, etc. shall be tested. The test requirements are not the detailed test procedures. The test requirements are specified in the Contract Documents.
Trending
- Monitoring using the building control system.

Vendor
- Supplier of equipment.

Warranty Period
- Warranty period for entire project, including equipment components. Warranty begins at Substantial Completion and extends for at least one year, unless specifically noted otherwise in the Contract Documents and accepted submittals.

E. Coordination

i. Commissioning Team. The members of the commissioning team consist of the Commissioning authority (CA), the Project Manager, the Contractor, the Design Professional and design consultants (particularly the mechanical engineer), the Mechanical Contractor (MC), the Electrical Contractor (EC), the TAB representative, the Controls Contractor (CC) and any other installing subcontractors or suppliers of equipment. The Owner’s building or plant operator/engineer shall be included in the commissioning process.

ii. Management. The CA is hired by the Owner directly. The CA directs and coordinates the commissioning activities and the reports to the Project Manager. All members of the commissioning team work together to fulfill their contracted responsibilities and meet the objectives of the Contract Documents. The CA’s responsibilities are the same regardless of who hired the CA.

iii. Scheduling: The CA will work with the Contractor according to established protocols to schedule the commissioning activities. The CA will provide sufficient notice to the Contractor for scheduling commissioning activities. The Contractor will integrate all commissioning activities into the master schedule. All parties will address scheduling problems and make necessary notifications in a timely manner in order to expedite the commissioning process. The CA will provide the initial schedule of primary commissioning events at the commissioning scoping meeting. The Commissioning Plan provides a format for this schedule. As construction progresses more detailed schedules are developed by the CA. The Commissioning Plan also provides a format for detailed schedules.

F. Commissioning Process

i. Commissioning Plan. The Cx Plan, provided as part of the Contract Documents, is binding on the Contractor. The Commissioning Plan provides guidance in the execution of the commissioning process. Just after the initial commissioning scoping meeting the CA will update the plan which is then considered the “final” plan, though it will continue to evolve and expand as the project progresses. The Contract Documents will take precedence over the Cx Plan.

ii. Commissioning Process. The following narrative provides a brief overview of the typical commissioning tasks during construction and the general order in which they occur.

a. Commissioning during construction begins with a scoping meeting conducted by the CA where the commissioning process is reviewed with the commissioning team members.
b. Additional meetings will be required throughout construction, scheduled by the CA with necessary parties attending, to plan, scope, coordinate, schedule future activities and resolve problems.
c. Equipment documentation is submitted to the CA during normal submittals, including detailed start-up procedures.
d. The CA works with the Subs in developing startup plans and startup documentation formats, including providing the Subs with pre-functional checklists to be completed, during the startup process.
e. In general, the checkout and performance verification proceeds from simple to complex; from component level to equipment to systems and intersystem levels with pre-functional checklists being completed before functional testing.
f. The Subs, under their own direction, execute and document the pre-functional checklists and perform startup and initial checkout. The CA documents that the checklists and startup were completed according to the approved plans. This may include the CA witnessing start-up of selected equipment.
g. The CA develops specific equipment and system functional performance test procedures. The Subs review the procedures.
h. The procedures are executed by the Subs, under the direction of, and documented by the CA.
i. Items of non-compliance in material, installation or setup are corrected at the Sub’s expense and the system retested.
j. The CA reviews the O&M documentation for completeness.
k. Commissioning is completed before Substantial Completion.
l. The CA reviews, pre-approves and coordinates the training provided by the Subs and verifies that is was completed.
m. Deferred testing is conducted, as specified or required.

G. Responsibilities

i. The responsibilities of various parties in the commissioning process are provided in this section. The responsibilities in this section for the Design Professional, Mechanical and electrical designers / engineers (of the Design Professional), the Contractor, Mechanical Contractor (of the Contractor), Controls Contractor (of the Contractor), Test and Balance subcontractor (of the Contractor), and Equipment Suppliers (of the Contractor), are minimum responsibility requirements. The responsibilities for the Commissioning Agent and Project Manager are provided for reference only and may change with each Project.

ii. All Parties

a. Follow the Cx Plan.
b. Attend commissioning scoping meeting and additional meetings, as necessary.

iii. Design Professional – Construction and Acceptance Phase

a. Project Manager will manage the CA contract.
b. Attend the commissioning scoping meeting and selected commissioning team meetings when requested to do so by the Owner.
c. Perform submittal review, construction observation, as-built drawing preparation, O&M manual review, TAB report review, etc.
d. Provide clarification to design narrative documentation requested by the CA to fully understand design intent.

e. Assist with resolution of system design deficiencies identified during commissioning process as required.

f. Prepare and submit final as-built design intent documentation for inclusion in the O&M manuals. Review and approve the O&M manuals, TAB report(s), etc.

iv. Design Professional – Warranty Phase

a. Coordinate resolution of design non-conformance and design deficiencies identified during warranty-period commissioning.

v. Mechanical and electrical designers/engineers (of the Design Professional)

Construction and Acceptance Phase:

a. Perform normal submittal review, construction observation, as-built drawing preparation, etc., as contracted.

b. Provide any clarification to design narrative and sequences documentation requested by the CA to fully understand design intent. The designers shall assist (along with the Contractors) in clarifying the operation and control of commissioned equipment in areas where the specifications, control drawings or equipment documentation is not sufficient for writing detailed testing procedures.

c. Attend commissioning scoping meetings and other selected commissioning team meetings when presence is requested by Project Manager.

d. Participate in the resolution of system deficiencies identified during commissioning.

e. Prepare and submit the final as-built design intent and operating parameters documentation for inclusion in the O&M manuals. Review and approve the O&M manuals.

f. Provide a presentation at one of the training sessions for the Owner’s personnel to describe how system(s) is (are) intended to operate to achieve the design intent.

vi. Mechanical and electrical designers/engineers (of the Design Professional)

Warranty Period:

a. Participate in the resolution of non-compliance, non-conformance and design deficiencies identified during commissioning during warranty-period commissioning.

vii. Commissioning Authority (CA)-Construction and Acceptance Phase:

a. The CA is not responsible for design concept, design criteria, compliance with codes, design or general construction scheduling, cost estimating, or construction management. The CA may assist with problem-solving but ultimately responsibility for this rests with the Contractor and the Design Professional. The primary role of the CA is to develop and coordinate the execution of a testing plan, observe and document performance—that systems are functioning in accordance with the documented design intent and in accordance with the Contract Documents. The Contractors will provide all tools or the use of tools to start, check-out and functionally test equipment and systems, except for
specified testing with portable data-loggers, which shall be supplied and installed by the CA.

b. Coordinates and directs the commissioning activities in a logical, sequential and efficient manner using consistent protocols and forms, documentation, clear and regular communications and consultations with all necessary parties, updated timelines and schedules as required to execute the Cx/TAB plan and provides technical expertise.

c. Coordinate the commissioning work and, with the Contractor and Contractor ensure that commissioning activities are being scheduled into the master schedule.

d. Revise, as necessary, the Commissioning Plan.

e. Plan and conduct a commissioning scoping meeting and other commissioning meetings.

f. Request and review additional information required to perform commissioning tasks, including O&M materials, Contractor start-up and checkout procedures.

g. Before startup, gather and review the current control sequences and interlocks and work with Contractors and design engineers until sufficient clarity has been obtained, in writing, to be able to write detailed testing procedures.

h. Review and approve Contractor submittals applicable to systems being commissioned for compliance with commissioning needs, concurrent with the Design Professional reviews.

i. Write and distribute pre-functional tests and checklists.

j. Develop a start-up and initial systems checkout plan with Subs.

k. Perform site visits, as necessary, to observe component and system installations. Attends selected planning and job-site meetings to obtain information on construction progress. Review construction meeting minutes for revisions/substitutions relating to the commissioning process. Assist in resolving discrepancies that may arise/be found.

l. Witness all or part of the HVAC piping test and flushing procedure, sufficient to be confident that proper procedures were followed.

m. Document this testing and include the documentation in O&M manuals. Notify owners Project Manager of any deficiencies in results or procedures.

n. Witness all or part of any ductwork testing and cleaning procedures, sufficient to be confident that proper procedures were followed. Document this testing and include the documentation in O&M manuals. Notify owner’s Project Manager of any deficiencies in results or procedures.

o. Approve pre-functional tests and checklist completion by reviewing pre-functional checklist reports and by selected site observation and spot checking.

p. Approve systems startup by reviewing start-up reports and by selected site observation.

q. Review TAB Plan.

r. Oversee sufficient functional testing of the control system and approve
it to be used for TAB, before TAB is executed.

r. Approve air and water systems balancing by spot testing, by reviewing completed reports and by selected site observation.

s. With necessary assistance and review from installing Contractors, write the functional performance test procedures for equipment and systems. This may include energy management control system trending, standalone data logger monitoring or manual functional testing. Submit to Contractor for review, and for approval if required.

t. Analyze any functional performance trend logs and monitoring data to verify performance.

u. Coordinate, witness, and approve manual functional performance tests performed by installing Contractors. Coordinate retesting as necessary until satisfactory performance is achieved.

v. Maintain a master deficiency and resolution log and a separate testing record. Provide the Project Manager with written progress reports and test results with recommended actions.

w. Witness performance testing of smoke control systems by others and all other owner contracted tests or tests by manufacturer’s personnel over which the CA may not have direct control. Document these tests and include this documentation in Commissioning Record in O&M manuals.

x. Review equipment warranties to ensure that the Owner’s responsibilities are clearly defined.

y. Oversee and approve the training of the Owner’s operating personnel.

z. Compile and maintain a commissioning record and building systems book(s).

aa. Review and approve the preparation of the O&M manuals.

bb. Provide a final commissioning report (as described in this section).

c. Develop a systems manual per ASHRAE HVAC Commissioning Guideline 1-1996.

viii. Commissioning Authority Warranty Period

a. Coordinate and supervise required seasonal or deferred testing and deficiency corrections.

b. Return to the site at 10 months into the 12 month warranty period and review with facility staff the current building operation and the condition of outstanding issues related to the original and seasonal commissioning. Also interview facility staff and identify problems or concerns they have operating the building as originally intended. Make suggestions for improvements and for recording these changes in the O&M manuals. Identify areas that may come under warranty or under the original construction contract. Assist facility staff in developing reports, documents and requests for services to remedy outstanding problems.

c. Provide a summary outlining Owner’s Warranty Period responsibilities. Submit through proper channels but send a copy direct to Director O&M.

ix. Project Manager-Construction and Acceptance Phase

a. Manage the contract of the Design Professional and of the Contractor.
b. Arrange for facility operating and maintenance personnel to attend various field commissioning activities and field training sessions according to the Cx Plan—Construction Phase.

c. Provide final approval for the completion of the commissioning work.

x. Project Manager-Warranty Period
a. Ensure that any seasonal or deferred testing and any deficiency issues are addressed.

xi. Contractor-Construction and Acceptance Phase
a. Facilitate the coordination of the commissioning work by the CA, and ensure that commissioning activities are executed and programmed into the master schedule.
b. Include the cost of commissioning in the total contract price.
c. Furnish a copy of all construction documents, addenda, change orders and approved submittals and shop drawings related to commissioned equipment to the CA.
d. In each purchase order or subcontract written, include requirements for submittal data, O&M data, commissioning tasks and training.
e. Ensure that all Subs execute their commissioning responsibilities according to the Contract Documents and construction schedule.
f. A representative shall attend a commissioning scoping meeting and other necessary meetings scheduled by the CA to facilitate the Cx process.
g. Coordinate the training of owner personnel.
h. Prepare and submit O&M manuals, according to the Contract Documents, including clarifying and updating the original sequences of operation to as-built conditions.

xii. Contractor-Warranty Period
a. Ensure that Subs execute seasonal or deferred functional performance testing, witnessed by the CA, according to the specifications.
b. Ensure that Subs correct deficiencies and make necessary adjustments to O&M manuals and as-built drawings for applicable issues identified in seasonal testing.

xiii. Mechanical Contractor and Controls Contractor-Construction and Acceptance Phases
The commissioning responsibilities applicable to each of the mechanical and controls and TAB (if separate entity to CxA) subcontractors of section 23 00 00 shall be as follows (all references apply to commissioned equipment only):
a. Identify and itemize the cost allowed for attendance on commissioning in the contract price and submit to Contractor
b. In each purchase order or subcontract written, include requirements for submittal data, commissioning documentation, O&M data and training.
c. Attend a commissioning scoping meeting and other meetings necessary to facilitate the Cx process.
d. Contractors shall provide the CA with the required cut sheets and shop drawing submittals of commissioned equipment.
e. Provide additional requested documentation, prior to normal O&M manual submittals, to the CA for development of start-up and functional
testing procedures.

1) Typically this will include detailed manufacturer installation and start-up, operating, troubleshooting and maintenance procedures, full details of any owner-contracted tests, fan and pump curves, full factory testing reports, if any, and full warranty information, including all, clearly enumerated, Owner responsibilities required to ensure the warranty in force. In addition, the installation, start-up and checkout materials that are actually shipped inside the equipment and the actual field checkout sheet forms to be used by the factory or field technicians shall be submitted to the Commissioning Agent.

2) The Commissioning Agent may request further documentation necessary for the commissioning process.

3) This data request may be made prior to normal submittals.

f. Provide a copy of the O&M manuals and submittals of commissioned equipment, through normal channels, to the CA for review and approval.

g. MC and CC shall assist (along with the Design Professional) in clarifying the operation and control of commissioned equipment in areas where the specifications, control drawings or equipment documentation is not sufficient for writing detailed testing procedures.

h. Provide assistance to the CA in preparing the specific functional performance test procedures. Subs shall review test procedures to ensure feasibility, safety and equipment protection and provide necessary written alarm limits to be used during the tests.

i. Develop a full start-up and initial checkout plan using manufacturer’s start-up procedures and the pre-functional checklists from the CA for all commissioned equipment. Submit to CA for review and approval prior to startup.

j. During the startup and initial checkout process, execute the mechanical-related portions of the pre-functional checklists for all commissioned equipment.

k. Perform and clearly document all completed startup and system operational checkout procedures, providing a copy to the CA.

l. Address current Design Professional and/or Owner punch list items before functional testing. Air and water TAB shall be completed and deficiencies before functional testing of the respective air- or water-related systems commences.

m. Provide skilled technicians to execute starting of equipment and to execute the functional performance tests. Ensure that they are available and present during the agreed upon schedules and for sufficient duration to complete the necessary tests, adjustments and problem-solving.

n. Provide skilled technicians to perform functional performance testing under the direction of the CA for specified equipment. Assist the CA in interpreting the monitoring data, as necessary.

o. Correct deficiencies (differences between specified and observed
performance) as interpreted by the CA, Contractor and Design Professional and retest the equipment.

p. Prepare O&M manuals according to the Contract Documents, including clarifying and updating the original sequences of operation to as-built conditions.

q. During construction, maintain as-built red-line drawings for all drawings and final CAD or BIM (if required) as-builts for Contractor-generated coordination drawings. Update after completion of commissioning (excluding deferred testing).

r. Provide training of the Owner’s operating staff using expert qualified personnel, as specified.

s. Coordinate with equipment manufacturers to determine specific requirements to maintain the validity of the warranty.

xiv. Mechanical Contractor and Controls Contractor-Warranty Period

a. Execute seasonal or deferred functional performance testing, witnessed by the CA, according to the specifications.

b. Correct deficiencies and make necessary adjustments to O&M manuals and as-built drawings for applicable issues identified in any seasonal testing.

xv. Mechanical Contractor

The responsibilities of the HVAC mechanical Contractor, during construction and acceptance phases in addition to those listed above are:

a. Provide startup for all HVAC equipment, except for the building automation control system.

b. Assist and cooperate with the CA/TAB Subcontractor by:
 1) Putting all HVAC equipment and systems into operation and continuing the operation during each working day of TAB and commissioning, as required.
 2) Including cost of sheaves and belts that may be required by TAB.
 3) Providing test holes in ducts and plenums where directed by TAB to allow air measurements and air balancing. Providing an approved plug.
 4) Providing temperature and pressure taps needed for TAB and Commissioning testing. Advise the Design Professional in good time of any deficiency in the documents in this regard.

c. Install a P/T plug at each water sensor which is an input point to the control system.

d. List and clearly identify on the as-built drawings the locations of all airflow stations.

e. Prepare a preliminary schedule for Section 23 00 00 of the Standards and the Contract Documents Specifications pipe and duct system testing, flushing and cleaning, equipment start-up and completion for use by the CA. Update the schedule as appropriate.

f. Notify the Contractor or CA depending on protocol, when pipe and duct system testing, flushing, cleaning, startup of each piece of equipment and TAB will occur. Be responsible to notify the Contractor or CA, ahead of time, when commissioning activities not yet performed or not yet
scheduled will delay construction. Be proactive in seeing that TAB and Commissioning processes are executed and that the CA has the scheduling information needed to efficiently execute the commissioning process.

xvi. Controls Contractor

The commissioning responsibilities of the controls Contractor, during construction and acceptance phases in addition to those listed above are:

a. Sequences of Operation Submittals. The Controls Contractor’s submittals of control drawings shall include complete detailed sequences of operation for each piece of equipment, regardless of the completeness and clarity of the sequences in the specifications. They shall include:

1) An overview narrative of the system (1 or 2 paragraphs) generally describing its purpose, components and function.
2) All interlocks with other systems.
3) Detailed delineation of control between any packaged controls and the building automation system, listing what points the BAS monitors only and what BAS points are control points and are adjustable.
4) Written sequences of control for packaged controlled equipment. (Equipment manufacturers’ stock sequences may be included, but will generally require additional narrative).
5) Start-up sequences.
6) Warm-up mode sequences.
7) Normal operating mode sequences.
8) Unoccupied mode sequences.
9) Shutdown sequences.
10) Capacity control sequences and equipment staging.
11) Temperature and pressure control: setbacks, setups, resets, etc.
12) Detailed sequences for all control strategies, e.g., economizer control, optimum start/stop, staging, optimization, demand limiting, etc.
13) Effects of power or equipment failure with all standby component functions.
14) Sequences for all alarms and emergency shut downs.
15) Seasonal operational differences and recommendations.
16) Initial and recommended values for all adjustable settings, setpoints and parameters that are typically set or adjusted by operating staff; and any other control settings or fixed values, delays, etc. that will be useful during testing and operating the equipment.
17) Operating schedules.
18) To facilitate referencing in testing procedures, all sequences shall be written in small statements, each with a number for reference. For a given system, numbers will not repeat for different sequence sections, unless the sections are numbered.

b. Control Drawings Submittal
1) The control drawings shall have a key to all abbreviations.
2) The control drawings shall contain graphic schematic depictions of the systems and each component and provide accurate point-to-point connection information.
3) The schematics will include the system and component layout of any equipment that the control system monitors, enables or controls, even if the equipment is primarily controlled by packaged or integral controls.
4) Provide a full points list with at least the following included for each point:
 i.) Controlled system
 ii.) Point abbreviation
 iii.) Point description (DB temp, airflow, etc.) Display unit
 iv.) Control point or setpoint (Point that controls equipment and can have its setpoint changed, e.g. OSA, SAT, etc.)
 v.) Monitoring point (Point that does not control or contribute to the control of equipment, but is used for operation, maintenance, or performance verification)
 vi.) Intermediate point (Point whose value is used to make a calculation which then controls equipment, e.g. space temperatures that are averaged to a virtual point to control reset)
 vii.) Calculated point (“Virtual” point generated from calculations of other point values)
5) The Controls Contractor shall keep the CA informed of all changes to this list during programming and setup.

c. An updated as-built version of the control drawings and sequences of operation shall be included in the final controls O&M manual submittal.

d. Assist and cooperate with the TAB Subcontractor in the following manner:
 1) Meet with the TAB subcontractor prior to beginning TAB and review the TAB plan to determine the capabilities of the control system toward completing TAB. Provide the TAB any needed unique instruments for setting terminal unit boxes and instruct TAB in their use (handheld control system interface for use around the building during TAB, etc.).
 2) For a given area, have all required pre-functional checklists, calibrations, startup and selected functional tests of the system completed and approved by the CA prior to TAB.
 3) Provide a qualified technician to operate the controls to assist the TAB Subcontractor in performing TAB, or provide sufficient training for TAB to operate the system without assistance.

e. Assist and cooperate with the CA in the following manner:
 1) Using a skilled technician who is familiar with this building, execute the functional testing of the controls system. Assist in the functional testing of all equipment. Provide two-way radios during the testing.
2) Execute all control system trend logs.

2) The Controls Contractor shall prepare a written plan indicating in a step-by-step manner, the procedures that will be followed to test, checkout and adjust the control system prior to functional performance testing. At minimum, the plan shall include for each type of equipment controlled by the automatic controls:
 i) System name.
 ii) List of devices.

3) Step-by-step procedures for testing each controller after installation, including:
 i) Process of verifying proper hardware and wiring installation.
 ii) Process of downloading programs to local controllers and verifying that they are addressed correctly.
 iii) Process of performing operational checks of each controlled component.
 iv) Plan and process for calibrating valve and damper actuators and all sensors.
 v) A description of the expected field adjustments for transmitters, controllers and control actuators should control responses fall outside of expected values.

4) A copy of the log and field checkout sheets that will document the process. This log must include a place for initial and final read values during calibration of each point and clearly indicate when a sensor or controller has “passed” and is operating within the contract parameters.

5) A description of the instrumentation required for testing.

6) Indicate what tests on what systems should be completed prior to TAB using the control system for TAB work. Coordinate with the CA and TAB Subcontractor for this determination.

f. Provide a signed and dated certification to the CA and Contractor upon completion of the checkout of each controlled device, equipment and system prior to functional testing for each piece of equipment or system, that all system programming is complete as to all respects of the Contract Documents, except functional testing requirements.

g. Beyond the control points necessary to execute all documented control sequences, provide monitoring, control and virtual points as specified in Division 15.

h. List and clearly identify on the as-built duct and piping drawings the locations of all static and differential pressure sensors (air, water and building pressure).

i. The Controls Contractor shall provide the applicable version of the BAS software required by the CA and TAB Agency to do the Test and Balance and commissioning work specified at no extra cost to the contract or the TAB Agent.

xvii. Equipment Suppliers
a. Provide all requested submittal data, including detailed start-up procedures and specific responsibilities of the Owner to keep warranties in force.

b. Assist in equipment testing per agreements with Subs.

c. Include all special tools and instruments (only available from vendor, specific to a piece of equipment) required for testing equipment according to these Contract Documents in the base bid price to the Contractor, except for stand-alone data-logging equipment that may be used by the CA.

d. Through the Contractors they supply products to, analyze specified products and verify that the designer has specified the newest most updated equipment reasonable for this project’s scope and budget.

e. Provide information requested by CA regarding equipment sequence of operation and testing procedures.

f. Review test procedures for equipment installed by factory representatives.

H. Systems to be Commissioned

i. For reference only, the following systems are normally commissioned.

a. Ductwork

b. Variable frequency drives

c. Air Handling Units and Components

d. Pumps and hydronic components

e. Terminal Units (AirValves)

f. HVAC control system

g. Fire and smoke dampers

h. Outdoor air supply under all operating conditions.

i. Overall building pressure balance to ensure positive building pressure at all times - relative to outside and adjacent areas.

j. Testing, Adjusting and Balancing work (by and as part of the CxA scope of work)

k. Fume hood testing (by certified persons)

I. Submittals

i. The CA will provide appropriate Contractors with a specific request for the type of submittal documentation the CA requires facilitating the commissioning work. These requests will be integrated into the normal submittal process and protocol of the construction team. At minimum, the request will include the manufacturer and model number, the manufacturer’s printed installation and detailed start-up procedures, full sequences of operation, O&M data, performance data, any performance test procedures, control drawings and details of owner contracted tests. In addition, the installation and checkout materials that are actually shipped inside the equipment and the actual field checkout sheet forms to be used by the factory or field technicians shall be submitted to the Commissioning authority. All documentation requested by the CA will be included by the Subs in their O&M manual contributions.

ii. The Commissioning authority will review and approve submittals related to the commissioned equipment for conformance to the Contract Documents as it relates to the commissioning process, to the functional performance of the
equipment and adequacy for developing test procedures. This review is intended primarily to aid in the development of functional testing procedures and only secondarily to verify compliance with equipment specifications. The Commissioning authority will notify the Contractor, Project Manager or Design Professional as requested, of items missing or areas that are not in conformance with Contract Documents and which requires resubmission.

iii. The CA may request additional design intent narrative, including metrics, from the Design Professional and Controls Contractor, depending on the completeness of the design intent documentation and sequences provided with the Specifications.

iv. These submittals to the CA do not constitute compliance for O&M manual documentation. The O&M manuals are the responsibility of the Contractor, though the CA will review and approve them.

J. Start-Up, Pre-Functional Checklists and Initial Checkout

i. The following procedures apply to all equipment to be commissioned.

ii. General. Pre-functional checklists are important to ensure that the equipment and systems are hooked up and operational. It ensures that functional performance testing (in-depth system checkout) may proceed without unnecessary delays. Each piece of equipment receives full pre-functional checkout. No sampling strategies are used. The pre-functional testing for a given system must be successfully completed prior to formal functional performance testing of equipment or subsystems of the given system.

iii. Start-up and Initial Checkout Plan. The CA shall assist the commissioning team members responsible for startup of any equipment in developing detailed start-up plans for all equipment. The primary role of the CA in this process is to ensure that there is written documentation that each of the manufacturer-recommended procedures have been completed. Parties responsible for pre-functional checklists and startup are identified in the commissioning scoping meeting and in the checklist forms.

a. The CA provides the representative pre-functional checklists and procedures. These checklists indicate required procedures to be executed as part of startup and initial checkout of the systems and the party responsible for their execution.

b. These checklists and tests are provided by the CA to the Contractor. The Contractor determines which trade is responsible for executing and documenting each of the line item tasks and notes that trade on the form. Each form will have more than one trade responsible for its execution.

c. The subcontractor responsible for the purchase of the equipment develops the full start-up plan by combining (or adding to) the CA’s checklists with the manufacturer’s detailed start-up and checkout procedures from the O&M manual and the normally used field checkout sheets. The plan will include checklists and procedures with specific boxes or lines for recording and documenting the checking and inspections of each procedure and a summary statement with a signature block at the end of the plan. The full start-up plan could consist of something as simple as:
1) The CA’s pre-functional checklists.
2) The manufacturer’s standard written start-up procedures copied from the installation manuals with check boxes by each procedure and a signature block added by hand at the end.
3) The manufacturer’s normally used field checkout sheets.

d. The subcontractor submits the full startup plan to the CA for review and approval.
e. The CA reviews and approves the procedures and the format for documenting them, noting any procedures that need to be added.
f. The full start-up procedures and the approval form may be provided to the Project Manager for review and approval, depending on management protocol.

iv. Sensor and Actuator Calibration
a. All field-installed temperature, relative humidity, CO, CO₂ and pressure sensor and gages, and all actuators (dampers and valves) on all equipment shall be calibrated using the methods described below. Alternate methods may be used, if approved by the Owner before-hand. All test instruments shall have had a certified calibration within the last 12 months. Sensors installed in the unit at the factory with calibration certification provided need not be field calibrated.
b. All procedures used shall be fully documented on the pre-functional checklists or other suitable forms, clearly referencing the procedures followed and written documentation of initial, intermediate and final results.
c. Sensor Calibration Methods
1) All Sensors. Verify that all sensor locations are appropriate and accurately report the measured value and away from causes of erratic operation. Verify that sensors with shielded cable are grounded only at one end. For sensor pairs that are used to determine a temperature or pressure difference, make sure they are reading within 0.2°F of each other for temperature and within a tolerance equal to 2% of the reading, of each other, for pressure. Tolerances for critical applications may be tighter.
2) Sensors without Transmitters—Standard Application. Make a reading with a calibrated test instrument within 6 inches of the site sensor. Verify that the sensor reading (via the permanent thermostat, gage and building automation system (BAS)) is within the tolerances in the table below of the instrument-measured value. If not calibrate, replace sensor or relocate as needed.
3) Sensors With Transmitters—Standard Application. Disconnect sensor. Connect a signal generator in place of sensor. Connect ammeter in series between transmitter and BAS control panel. Using manufacturer’s resistance-temperature data, simulate minimum desired temperature. Adjust transmitter potentiometer zero until 4 mA is read by the ammeter. Repeat for the maximum temperature matching 20 mA to the
potentiometer span or maximum and verify at the BAS. Record all values and recalibrate controller as necessary to conform with specified control ramps, reset schedules, proportional relationship, reset relationship and P/I reaction. Reconnect sensor. Take all readings with calibrated test instruments within 6 inches of the site sensor. Verify that the sensor reading (via the permanent thermostat, gage or building automation system (BAS)) is within the tolerances in the table below of the instrument-measured value. If not, relocate and/or replace sensor and repeat. For pressure sensors, perform a similar process with a suitable signal generator.

4) Valve and Damper Stroke Setup and Check: EMS Readout. For all valve and damper actuator positions checked, verify the actual position against the BAS readout. Set pumps or fans to normal operating mode. Command valve or damper closed, visually verify that valve or damper is closed and adjust output zero signal as required. Command valve or damper open, verify position is full open and adjust output signal as required. Command valve or damper to a few intermediate positions. If actual valve or damper position doesn’t reasonably correspond, replace actuator or add pilot positioner (for pneumatics).

5) Closure for heating coil valves (NO): Set heating setpoint 20°F above room temperature. Observe valve open. Remove control air or power from the valve and verify that the valve stem and actuator position do not change. Restore to normal. Set heating setpoint to 20°F below room temperature. Observe the valve close. For pneumatics, by override in the EMS, increase pressure to valve by 3 psi (do not exceed actuator pressure rating) and verify valve stem and actuator position does not change. Restore to normal. Verify that all heating control valves shut tight with no bleed through, when commanded to the closed position.

6) Closure for cooling coil valves (NC): Set cooling setpoint 20°F above room temperature. Observe the valve close. Remove control air or power from the valve and verify that the valve stem and actuator position do not change. Restore to normal. Set cooling setpoint to 20°F below room temperature. Observe valve open. For pneumatics, by override in the EMS, increase pressure to valve by 3 psi (do not exceed actuator pressure rating) and verify valve stem and actuator position does not change. Restore to normal. Verify that all chilled water control valves shut tight with no bleed through, when commanded to the closed position.

2. PRODUCTS
 A. Test Equipment
 i. All standard testing equipment required to perform startup and initial checkout and required functional performance testing shall be provided by the Contractor
for the equipment being tested. For example, the mechanical Contractor for Section 23 00 00 shall ultimately be responsible for all standard testing equipment for the HVAC system and controls system in Section 23 00 00 except for equipment specific to and used by TAB in their commissioning responsibilities.

ii. Special equipment, tools and instruments (only available from vendor, specific to a piece of equipment) required for testing equipment, according to these Contract Documents shall be included in the base bid price to the Contractor and left on site, except for stand-alone data-logging equipment that may be used by the CA.

iii. Data-logging equipment and software required to test equipment will be provided by the CA, but shall not become the property of the Owner.

iv. All testing equipment shall be of sufficient quality and accuracy to test and/or measure system performance with the tolerances specified in the Contract Document Specifications. If not otherwise noted, the following minimum requirements apply: Temperature sensors and digital thermometers shall have a certified calibration within the past year to accuracy of 0.5F and a resolution of ±0.1F. Pressure sensors shall have an accuracy of ±2.0% of the value range being measured (not full range of meter) and have been calibrated within the last year. All equipment shall be calibrated according to the manufacturer’s recommended intervals and when dropped or damaged. Calibration tags shall be affixed or certificates readily available.

3. EXECUTION
 A. Meetings
 i. Scoping Meeting. Within 60 days of commencement of construction, the CA will schedule, plan and conduct a commissioning scoping meeting with the entire commissioning team in attendance. Meeting minutes will be distributed to all parties by the CA. Information gathered from this meeting will allow the CA to revise the cx Plan to its “final” version, which will also be distributed to all parties.

 ii. Miscellaneous Meetings. Other meetings will be planned and conducted by the CA as construction progresses. These meetings will cover coordination, deficiency resolution and planning issues with particular Subs. The CA will plan these meetings and will attempt to minimize unnecessary time being spent by Subs.

 B. Reporting
 i. The CA will provide regular reports to the Project Manager with increasing frequency as construction and commissioning progresses. Standard forms are provided and referenced in the Commissioning Plan.

 ii. The CA will regularly communicate with all members of the commissioning team, keeping them apprised of commissioning progress and scheduling changes through memos, progress reports, etc.

 iii. Testing or review approvals and non-conformance and deficiency reports are made regularly with the review and testing as described in later sections.

 a. A final summary report (about four to six pages, not including backup documentation) by the CA will be provided to the Project Manager, focusing on evaluating commissioning process issues and identifying
areas where the process could be improved. All acquired documentation, logs, minutes, reports, deficiency lists, communications, findings, unresolved issues, etc., will be compiled in appendices and provided with the summary report. Pre-functional checklists, functional tests and monitoring reports will not be part of the final report, but will be stored in the Commissioning Record in the O&M manuals.

C. Execution of Pre-Functional Checklists and Startup
 i. Four weeks prior to startup, the Subs and vendors schedule startup and checkout with the Contractor and CA. The performance of the pre-functional checklists, startup and checkout are directed and executed by the Sub or vendor. When checking off pre-functional checklists, signatures may be required of other Subs for verification of completion of their work.
 ii. The CA shall observe, at minimum, the procedures for each piece of primary equipment, unless there are multiple units, (in which case a sampling strategy may be used as approved by the Project Manager). In no case will the number of units witnessed be less than four on any one building, nor less than 20% of the total number of identical or very similar units. If more than one unit in a sample fails a test then 100% shall be tested.
 iii. For lower-level components of equipment, (e.g., VAV boxes, sensors, controllers), the CA shall observe a sampling of the pre-functional and start-up procedures. The sampling procedures are identified in the commissioning plan.
 iv. The Subs and vendors shall execute startup and provide the CA with a signed and dated copy of the completed start-up and pre-functional tests and checklists.
 v. Only individuals that have direct knowledge and witnessed that a line item task on the pre-functional checklist was actually performed shall sign off on the tests. It is not acceptable for witnessing supervisors to fill out these forms.

D. Deficiencies, Non-Conformance and Approval in Checklists and Startup
 i. The Subs shall list all outstanding items of the initial start-up and pre-functional procedures that were not completed successfully, at the bottom of the procedures form or on an attached sheet. The procedures form and any outstanding deficiencies are provided to the CA within two days of test completion.
 ii. The CA reviews the report and submits either a non-compliance report or an approval form to the Sub or Contractor. The CA shall work with the Subs and vendors to correct and retest deficiencies or uncompleted items. The CA will involve the Contractor and others as necessary. The installing Subs or vendors shall correct all deficient and/or incomplete work identified in the checklists and tests in a timely manner, and shall notify the CA as soon as outstanding items have been corrected and resubmit an updated start-up report and a Statement of Correction on the original non-compliance report. When satisfactorily completed, the CA recommends approval of the execution of the checklists and startup of each system to the Contractor using a standard form.
 iii. Items left incomplete, which later cause deficiencies or delays during functional testing may result in back charges to the responsible party.

E. Phased Commissioning
i. The project will require startup and initial checkout to be executed in phases. This phasing will be planned and scheduled in a coordination meeting of the CA, Contractor, mechanical, TAB and controls. Results will be added to the master and commissioning schedule.

F. Functional Performance Testing
 i. This sub-section applies to all commissioning functional testing for all divisions.
 ii. The parties responsible to execute each test will be listed with each test.
 iii. Objectives and Scope. The objective of functional performance testing is to demonstrate that each system is operating according to the documented design intent and Contract Documents. Functional testing facilitates bringing the systems from a state of substantial completion to full dynamic operation. Additionally, during the testing process, areas of deficient performance are identified and corrected, improving the operation and functioning of the systems. Each system shall be operated through all modes of operation (seasonal, occupied, unoccupied, warm-up, cool-down, part- and full-load). Each sequence in the sequences of operation shall be verified. Systems shall also be tested for correct response to abnormal conditions such as power failure, freeze condition, low oil pressure, no flow, equipment failure, etc.

 iv. Development of Test Procedures. Before test procedures are written, the CA shall obtain all requested documentation and a current list of change orders affecting equipment or systems, including an updated points list, program code, control sequences and parameters. The CA shall develop specific test procedures and forms to verify and document proper operation of each piece of equipment and system. Each Sub or vendor responsible to execute a test, shall provide limited assistance to the CA in developing the procedures review (answering questions about equipment, operation, sequences, etc.). Prior to execution, the CA shall provide a copy of the test procedures to the Sub(s) who shall review the tests for feasibility, safety, equipment and warranty protection. The CA shall submit the tests to the Design Professional for review. The CA shall review owner-contracted, factory testing or required owner acceptance tests which the CA is not responsible to oversee, including documentation format, and shall determine what further testing or format changes may be required to comply with the Specifications. Redundancy of testing shall be minimized. The purpose of any given specific test is to verify and document compliance with the stated criteria of acceptance given on the test form. The test procedure forms developed by the CA shall include (but not be limited to) the following information:
 a. System and equipment or component name(s)
 b. Equipment location and ID number
 c. Unique test ID number, and reference to unique prefunctional checklist and start-up documentation ID numbers for the piece of equipment
 d. Date
 e. Project name
 f. Participating parties
 g. A copy of the specification section describing the test requirements
 h. A copy of the specific sequence of operations or other specified parameters being verified
i. Formulas used in any calculations
j. Required pre-test field measurements
k. Instructions for setting up the test.
l. Special cautions, alarm limits, etc.
m. Specific step-by-step procedures to execute the test, in a clear, sequential and repeatable format
n. Acceptance criteria of proper performance with a Yes / No check box to allow for clearly marking whether or not proper performance of each part of the test was achieved.
o. A section for comments
p. Signatures and date block for the CA

v. Test Methods:
a. Functional performance testing and verification may be achieved by manual testing (persons manipulate the equipment and observe performance) or by monitoring the performance and analyzing the results using the control system’s trend log capabilities or by stand-alone data-loggers. The CA may substitute specified test methods and may recommend alternative tests, or additional tests, to those specified, with prior approval of the Project Manager. (Obtain prior approval if additional cost will be incurred by the Owner). The CA will determine which method is most appropriate for tests where documents do not spell out tests or methods
b. Simulated Conditions. Simulating conditions (not by an overwritten value) shall be allowed, though timing the testing to experience actual conditions is encouraged wherever practical. (Clearly document all simulated condition testing)
c. Overwritten Values. Overwriting sensor values to simulate a condition, such as overwriting the outside air temperature reading in a control system to be something other than it really is, shall be allowed, but shall be used with caution and avoided when possible. Such testing methods often can only test a part of a system, as the interactions and responses of other systems will be erroneous or not applicable. Simulating a condition is preferable. e.g., for the above case, by heating the outside air sensor with a hair blower rather than overwriting the value or by altering the appropriate setpoint to see the desired response. Before simulating conditions or overwriting values, sensors, transducers and devices shall have been calibrated. All tests done using overwritten (overrided) values shall be clearly documented.
d. Simulated Signals. Using a signal generator which creates a simulated signal to test and calibrate transducers and DDC constants is generally recommended over using the sensor to act as the signal generator via simulated conditions or overwritten values.
e. Altering Setpoints. Rather than overwriting sensor values, and when simulating conditions is difficult, altering setpoints to test a sequence is acceptable. For example, to see the AC compressor lockout work at an outside air temperature below 55°F, when the outside air temperature is above 55°F, temporarily change the lockout setpoint to be 2°F above the
current outside air temperature.

f. Indirect Indicators. Relying on indirect indicators for responses or performance shall be allowed only after visually and directly verifying and documenting, over the range of the tested parameters, that the indirect readings through the control system represent actual conditions and responses. Much of this verification is completed during pre-functional testing.

g. Setup. Each function and test shall be performed under conditions that simulate actual conditions as close as is practically possible. The Sub executing the test shall provide all necessary materials, system modifications, etc. to produce the necessary flows, pressures, temperatures, etc. necessary to execute the test according to the specified conditions. At completion of the test, the Sub shall return all affected building equipment and systems, due to these temporary modifications, to their pre-test condition.

h. Sampling. Multiple identical pieces of non-life-safety or otherwise non-critical equipment may be functionally tested using a sampling strategy. Significant application differences and significant sequence of operation differences in otherwise identical equipment invalidates their common identity. A small size or capacity difference, alone, does not constitute a difference. It is noted that no sampling by Subs is allowed in pre-functional checklist execution.

vi. Coordination and Scheduling. The Subs shall provide sufficient notice to the CA regarding their completion schedule for the pre-functional checklists and startup of all equipment and systems. The CA will schedule functional tests through the Contractor, and affected Subs. The CA shall direct, witness and document the functional testing of all equipment and systems. The Subs shall execute the tests.

 a. In general, functional testing is conducted after pre-functional testing and startup has been satisfactorily completed. The control system is sufficiently tested and approved by the CA before it is used for TAB or to verify performance of other components or systems. The air balancing and water balancing is completed and debugged before functional testing of air-related or water-related equipment or systems. Testing proceeds from components to subsystems to systems. When the proper performance of all interacting individual systems has been achieved, the interface or coordinated responses between systems is checked.

 b. Test Equipment. Refer to Section 18000, Part 2 above for test equipment requirements.

 c. Problem Solving. The CA will recommend solutions to problems found, however the burden of responsibility to solve, correct and retest problems remains with the Contractor, Subs and Design Professional.

vi. Documentation, Non-Conformance and Approval of Tests

 a. Documentation. The CA shall witness and document the results of all functional performance tests using the specific procedural forms developed for that purpose. Prior to testing, these forms are provided to the Project Manager for review and approval and to the Subs for
review. The CA will include the completed forms in the O&M manuals.

b. Non-Conformance.

a. The CA will record the results of the functional test on the procedure or test form. All deficiencies or non-conformance issues shall be noted and reported to the Contractor on a standard non-compliance form.

b. Corrections of minor deficiencies identified may be made during the tests at the discretion of the CA. In such cases the deficiency and resolution will be documented on the procedure form.

c. Every effort will be made to expedite the testing process and minimize unnecessary delays, while not compromising the integrity of the procedures. However, the CA will not be pressured into overlooking deficient work or loosening acceptance criteria to satisfy scheduling or cost issues.

d. As tests progress and a deficiency is identified, the CA discusses the issue with the executing Contractor. When there is no dispute on the deficiency and the Sub accepts responsibility to correct it:

i.) The CA documents the deficiency and the Sub’s response and intentions and they go on to another test or sequence. After the day’s work, the CA submits the non-compliance reports to the Contractor for signature, if required. A copy is provided to the Sub and CA. The Sub corrects the deficiency, signs the statement of correction at the bottom of the non-compliance form certifying that the equipment is ready to be retested and sends it back to the CA.

ii.) The CA reschedules the test and the test is repeated.

e. If there is a dispute about a deficiency, regarding whether it is a deficiency or who is responsible:

i.) The deficiency shall be documented on the non-compliance form with the Sub’s response and a copy given to the Contractor and to the Sub representative assumed to be responsible.

ii.) Resolutions are made at the lowest management level possible. Other parties are brought into the discussions as needed. Final interpretive authority is with the Design Professional. Final acceptance authority is with the Project Manager.

iii.) The CA documents the resolution process.

iv.) Once the interpretation and resolution have been decided, the appropriate party corrects the deficiency, signs the statement of correction on the non-compliance form and provides it to the CA. The CA reschedules the test and the test is repeated until satisfactory performance is achieved.

f. Cost of Retesting.
i.) The cost for the Sub to retest a pre-functional or functional test, if they are responsible for the deficiency, shall be theirs. If they are not responsible, any cost recovery for retesting costs shall be negotiated with the Contractor.

ii.) For a deficiency identified, not related to any pre-functional checklist or start-up fault, the following shall apply: The CA and Contractor will direct the retesting of the equipment once at no “charge” to the Contractor for their time. However, the CA’s and Contractor’s time for a second retest will be charged to the Contractor, who may choose to recover costs from the responsible Sub.

iii.) The time for the CA and Contractor to direct any retesting required because a specific pre-functional checklist or start-up test item, reported to have been successfully completed, but determined during functional testing to be faulty, will be back charged to the Contractor, who may choose to recover costs from the party responsible for executing the faulty pre-functional test.

iv.) The Contractor shall respond in writing to the CA and Contractor at least as often as commissioning meetings are being scheduled concerning the status of each apparent outstanding discrepancy identified during commissioning. Discussion shall cover explanations of any disagreements and proposals for their resolution.

v.) The CA retains the original non-conformance forms until the end of the project.

vi.) Any required retesting by any Contractor shall not be considered a justified reason for a claim of delay or for a time extension by the Contractor.

c. Failure Due to Manufacturer Defect. If 10%, or three, whichever is greater, of identical pieces (size alone does not constitute a difference) of equipment fail to perform to the Contract Documents (mechanically and/or substantively) due to manufacturing defect, not allowing it to meet its submitted performance spec, all identical units may be considered unacceptable by the Contractor. In such case, the Contractor shall provide the Owner with the following:

1) Within one week of notification from the Contractor, the Contractor or manufacturer’s representative shall examine all other identical units making a record of the findings. The findings shall be provided to the Contractor within two weeks of the original notice.

2) Within two weeks of the original notification, the Contractor or manufacturer shall provide a signed and dated, written explanation of the problem, cause of failures, etc. and all proposed solutions which shall include full equipment
The proposed solutions shall not significantly exceed the specification requirements of the original installation.

3) The Contractor will determine whether a replacement of all identical units or a repair is acceptable.

4) Two examples of the proposed solution will be installed by the Contractor and the Contractor will be allowed to test the installations for up to one week, upon which the Contractor will decide whether to accept the solution.

5) Upon acceptance, the Contractor and/or manufacturer shall replace or repair all identical items, at their expense and extend the warranty accordingly, if the original equipment warranty had begun. The replacement/repair work shall proceed with reasonable speed beginning within one week from when parts can be obtained.

d. Approval. The CA notes each satisfactorily demonstrated function on the test form. Formal approval of the functional test is made later after review by the CA and by the Contractor, if necessary. The CA recommends acceptance of each test to the Contractor using a standard form. The Contractor gives final approval on each test using the same form, providing a signed copy to the CA and the Contractor.

vii. Operation and Maintenance Manuals

a. The specific content and format requirements for the standard O&M manuals are detailed in the specifications

b. Design Professional Contribution. The Design Professional will include in the beginning of the O&M manuals a separate section describing the systems including:

1) The design intent narrative prepared by the Design Professional and provided as part of the bid documents, updated to as-built status by the Design Professional.

c. CA Review and Approval. Prior to substantial completion, the CA shall review the O&M manuals, documentation and redline as-buils for systems that were commissioned to verify compliance with the Specifications. The CA will communicate deficiencies in the manuals to the Contractor or Design Professional, as requested. Upon a successful review of the corrections, the CA recommends approval and acceptance of these sections of the O&M manuals to the Contractor, Project Manager or Design Professional. The CA also reviews each equipment warranty and verifies that all requirements to keep the warranty valid are clearly stated. This work does not supersede the Design Professional’s review of the O&M manuals according to the Design Professional’s contract.

viii. Commissioning Record in O&M Manuals

a. The CA is responsible to compile, organize and index the following commissioning data by equipment into labeled, indexed and tabbed, three-ring binders and deliver it to the Contractor, to be included with the O&M manuals. Three copies of the manuals will be provided.

b. Final Report Details. The final commissioning report shall include an
executive summary, list of participants and roles, brief building description, overview of commissioning and testing scope and a general description of testing and verification methods. For each piece of commissioned equipment, the report should contain the disposition of the commissioning authority regarding the adequacy of the equipment, documentation and training meeting the contract documents in the following areas: 1) Equipment meeting the equipment specifications, 2) Equipment installation, 3) Functional performance and efficiency, 4) Equipment documentation and design intent, and 5) Operator training. All outstanding non-compliance items shall be specifically listed. Recommendations for improvement to equipment or operations, future actions, commissioning process changes, etc. shall also be listed. Each non-compliance issue shall be referenced to the specific functional test, inspection, trend log, etc. where the deficiency is documented. The functional performance and efficiency section for each piece of equipment shall include a brief description of the verification method used (manual testing, BAS trend logs, data loggers, etc.) and include observations and conclusions from the testing.

c. The CA shall make a back-up copy of the as-commissioned software, including all set-points, terminal unit coefficients, loop tuning, VSD drive maximums and minimums, etc. The CD(s) or other storage media shall be dated and clearly identified as such. 1 copy shall be provided to PPD large AC shop, 1 to PPD- Engineering and 1 to the controls Contractor. The CA shall keep the original, make any changes needed during the warranty period and redistribute copies at conclusion of the warranty.

d. Other documentation will be retained by the CA.

ix. Training of Owner Personnel
a. The Contractor shall be responsible for training coordination and scheduling and ultimately for ensuring that training is completed.

b. The CA shall be responsible for overseeing and approving the content and adequacy of the training of Owner personnel for commissioned equipment.

1) The CA shall interview the facility manager and lead engineer to determine the special needs and areas where training will be most valuable. The Owner and CA shall decide how rigorous the training should be for each piece of commissioned equipment. The CA shall communicate the results to the Subs and vendors who have training responsibilities.

2) In addition to these general requirements, the specific training requirements of Owner personnel by Subs and vendors is specified in Division 15 and 16.

3) Each Sub and vendor responsible for training will submit a written training plan to the CA for review and approval prior to training. The plan will cover the following elements:

 i.) Equipment (included in training)
 ii.) Intended audience
 iii.) Location of training
iv.) Objectives

v.) Subjects covered (description, duration of discussion, special methods, etc.)

vi.) Duration of training on each subject

vii.) Instructor for each subject

viii.) Methods (classroom lecture, video, site walk-through, actual operational demonstrations, written handouts, etc.)

ix.) Instructor and qualifications

4) For the primary HVAC equipment, the Controls Contractor shall provide a short discussion of the control of the equipment during the mechanical or electrical training conducted by others.

x. Deferred Testing

a. Unforeseen Deferred Tests. If any check or test cannot be completed due to the building structure, required occupancy condition or other deficiency, execution of checklists and functional testing may be delayed upon approval of the Contractor. These tests will be conducted in the same manner as the seasonal tests as soon as possible. Services of necessary parties will be negotiated.

b. Seasonal Testing. During the warranty period, seasonal testing (tests delayed until weather conditions are closer to the system’s design) specified in Section 15997 shall be completed as part of this contract. The CA shall coordinate this activity. Tests will be executed, documented and deficiencies corrected by the appropriate Subs, with facilities staff and the CA witnessing. Any final adjustments to the O&M manuals and as-builds due to the testing will be made.

c. The CA shall carry out a review of the systems operation 3 to 2 months before the expiry of the warranty period and submit a report to PPD.

xi. Written Work Products

a. The commissioning process generates a number of written work products described in various parts of the Specifications. The Commissioning Plan lists all the formal written work products, describes briefly their contents, who is responsible to create them, their due dates, who receives and approves them and the location of the specification to create them. In summary, the written products are:

<table>
<thead>
<tr>
<th>Product</th>
<th>Developed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final commissioning plan</td>
<td>CA</td>
</tr>
<tr>
<td>Meeting minutes</td>
<td>CA</td>
</tr>
<tr>
<td>Commissioning schedules</td>
<td>CA with Contractor</td>
</tr>
<tr>
<td>Equipment documentation submittals</td>
<td>Subs</td>
</tr>
<tr>
<td>Sequence of operation clarifications</td>
<td>Subs and Design Professional (As Needed)</td>
</tr>
<tr>
<td>Design Intent clarifications</td>
<td>Design Professional</td>
</tr>
<tr>
<td>Pre-functional checklists</td>
<td>CA</td>
</tr>
<tr>
<td>Startup and initial checkout plan</td>
<td>Subs and CA</td>
</tr>
<tr>
<td>Startup and initial checkout forms filled out</td>
<td>Subs (Compilation of Existing Documents)</td>
</tr>
<tr>
<td>Document</td>
<td>Responsible Party</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>Final TAB report</td>
<td>TAB</td>
</tr>
<tr>
<td>Issues log (deficiencies)</td>
<td>CA</td>
</tr>
<tr>
<td>Commissioning Progress Record</td>
<td>CA</td>
</tr>
<tr>
<td>Deficiency reports</td>
<td>CA</td>
</tr>
<tr>
<td>Functional test forms</td>
<td>CA</td>
</tr>
<tr>
<td>Filled out functional tests</td>
<td>CA</td>
</tr>
<tr>
<td>O&M manuals</td>
<td>Subs</td>
</tr>
<tr>
<td>Commissioning record book</td>
<td>CA</td>
</tr>
<tr>
<td>Overall training plan</td>
<td>CA and Contractor</td>
</tr>
<tr>
<td>Specific training agendas</td>
<td>Subs</td>
</tr>
<tr>
<td>Final commissioning report</td>
<td>CA</td>
</tr>
<tr>
<td>Misc. approvals</td>
<td>CA</td>
</tr>
</tbody>
</table>
1. GENERAL

A. Related sections:
 i. 23 00 00 – General Mechanical Requirements (HVAC)
 ii. 23 05 19 – Meters and Gages for HVAC Piping
 iii. 23 05 93 – Testing, Adjusting, and Balancing for HVAC
 iv. 23 08 00 – Commissioning of HVAC
 v. 27 00 00 – Communications
 vi. 27 15 00 – Communications Horizontal Cabling

B. The BAS shall utilize direct digital control (DDC) technology to maintain the space conditions and provide automatic control of the associated mechanical equipment.

C. For the UGA Athens campus, the building automation controls system main software and hardware reside at server racks located at the FMD Chicopee building. The Design Professional shall coordinate with the Project Manager and FMD to determine if any front-end computing hardware upgrade / replacements are required in the Chicopee building as part of the Project. If needed, the Design Professional shall include specifications for the installation of 12-24 port Brocade switch in the Project. The Contractor and controls subcontractor are additionally responsible for including any required software or hardware upgrades specific to the selected controls system in the Cost of the Work or Bid.

D. The Design Professional is responsible for coordinating the connection locations of the direct digital controls system to the UGA network.
 i. Refer to 27 15 00 Communications Horizontal Cabling for data cabling requirements.
 ii. The Design Professional shall locate all required ethernet points / drops to the Project Manager and the Project Manager shall request IP address assignments. The Contractor shall provide the Project Manager with the date that the data connection points utilized by the DDC are required to be active. The DDC system shall be actively connected to the UGA network prior to the start of TAB to allow TAB subcontractor and Design Professional to check the Work before completion and handover.
 iii. All information technology related issues shall be communicated promptly to Project Manager.

E. The Contractor shall coordinate with the controls subcontractor during preparation of shop drawings to ensure that tappings for sensors are provided and are located to ensure accurate sensing and control.

F. Provide instrumentation across all heat exchangers plus P/T plugs; P/T plugs and wells. for pressure gauges and thermometers shall be provided across all heating and cooling coils, control valves and strainers. Install filter gauges across all filter banks.

G. Utilities to building shall be independently metered and trended via the BAS.

H. Control drawings shall show schematic control diagrams for all systems; show, as minimum, symbols for sensors, controllers, actuator; sequences referencing these sensors, controllers, actuator symbols; i/o summaries; system architecture/riser. Input and output numbering shall be descriptive to indicate the function (Use SAT1, OAD1,
etc., in lieu of AI1, DI1, etc.); every actuator shall, unless specified otherwise, have a dedicated output and independently adjustable control range.

I. Control system devices and panels shall have suppressors to protect against lightning damage; power supply surges; induced voltage from other equipment such as transformers or electric motor operations; and electronic transmission/relay such as may be caused by radio/TV broadcasting towers, radars and high-voltage transmission lines.

J. Thermometers and pressure gauges shall be mounted to be easily readable by observer standing on the floor and adjusting the device concerned.

K. Provide leaving air temp sensor on all AHUs and VAV terminals.

L. The controls contractor shall verify the specified sizes of control devices, (valves, dampers, etc.) to ensure the devices have the correct system authority for proper, stable, control.

M. HVAC systems shall be zoned for a maximum of 3 thermally similar spaces per zone. All non-common areas shall have separate adjustable sensors.

N. The controls contractor shall provide the applicable version of the Building Automated Systems (BAS) software required by the TAB subcontractor to do the Test and Balance work specified at no extra cost to the Contract or the TAB subcontractor.

O. Graphic Interface:
 i. General
 a. SPECIFY GRAPHICS specific to this project as follows:
 LEVEL ONE: Shall identify location of building on the site.
 LEVEL TWO: Shall show each floor plan, basement, first, second, and roof.
 LEVEL THREE: Shall show mechanical rooms.
 LEVEL FOUR: Shall show each individual system, chiller, air-handling units, terminal units, fans, etc.
 b. On all screens, the entire graphics screen should be visible in full screen mode, i.e. no scroll bar required to view entire screen and should be printable with a white back ground.
 c. A legend should be provided on all screens where graphical colors are used. Provide an active link to a comprehensive project specific legend that explains all abbreviations used.
 d. Floor plan graphics should be uniform design for all projects: simple, easy to read, intuitive, uncluttered and organized. Floor plans should be 2 dimensional only. (No 3D floor plans)
 e. Graphic displays shall show all I/O points including set points, dynamic, real time values of temperature, pressure, status, etc., alarm settings and any current alarm/alert conditions; shall show air flows in CFM and temperature, actual and set-pint, for outdoor air, return air and supply on AHUs and primary air on VAV terminals. Graphics for VAV terminals shall so maximum, minimum, dual minimum, etc, as applicable and the actual real-time CFM.
 f. All outputs should be able to be overridden from the graphical interface. Clear intuitive means of indicating when any point is overridden to a manual position shall be provided on the graphic. This could be done by text changing color from a normal state or a hand icon.
appearing next to the over-ridden point.
dimensional to clearly identify service (CHW Supply, CHW Return, CW
Supply, CW Return, MP Steam, Pumped Condensate, Make-up, etc.).
Display shall use bold colors (rather than shades).
g. Graphics shall show water flow in real-time and set-point for GPM,
temperature and pressure drop. All points shall be trended and
provided historical trending with enough memory for up to 1 year of
data. Point names shall be process specific, unique and intuitive on
control drawings with the same on graphic screen (do not use AI1, DO1,
T1, P1, but LAT1, SDSP1, etc).
h. Graphics shall clearly differentiate between normal operating mode,
manual over-ride, alarm, etc.

ii. Building Level
a. This level should include an overall building plan, illustrating all floors (if
possible). The overall floor plans will indicate comfort status displayed
via color codes. The intent is to allow the building engineer to quickly
see problem areas within the facility.
b. Main building screen should indicate major building systems that are in
alarm and those elements that have lost connectivity with the server.
c. Main building screen should provide active links to as-built control
drawings, basis of design documentation, and sequence of operations.
d. Outside air temperature and relative humidity should be displayed.

iii. Floor Plan Level
a. Floor plan level graphics should display the comfort status of all rooms
on that floor via color codes incorporated into the actual floor layout.
Comfort status should include actual status of all controlled variables:
temperature, humidity, indoor air quality (CO2 level), etc. Active links to
change the set points of these variables should be incorporated.
b. Zone boundaries should be able to be determined by means of color-
coded floor plans at this level.
c. Web page should identify the building, i.e. “Pharmacy 2nd Floor”, clear
at the top of the page, centered, just above the floor plan(s)
d. Active links to other floors in the building should be provided
e. Layout and location of system components: duct, boxes, etc. should be
provided with color code according to use (supply, return)
f. Identify AHU(s) and central exhaust fan(s) with name and location
serving the floor with active link to its graphic.

iv. Zone Level
a. All “%” indicators of valves or dampers should indicate “open” or
“closed”
b. Should indicate air handler supplying the zone on the page and provide
da dynamic link to that page
c. Occupancy status and temperature should be graphically represented
via a color bar chart
d. Entering and Exiting temperatures should be shown at the device
e. Indication of air flow through box should be shown graphically
f. Actual components of box should be shown graphically
g. All points should have process specific, intuitive, names on every graphic screen (not T1, P1, but LAT1, SDSP1, etc. (see ‘project specific legend’) – to be used consistently across all graphics and for all projects. (ex. Don’t use ‘discharge air temp’ and ‘leaving air temp’)

v. System Schematics
a. Graphics should include a system schematics page showing all major components of any given monitored system (chilled water system, hot water system, AHU and all associated terminal units, etc.) and all measured variables as required to give the building engineer an overall perspective of any given system.

P. Trending/Reporting
i. General
a. System should allow user to create new trends/reports from the browser mode without the need for any programming.
b. Trends and reports should be pre-formatted, requiring minimal user effort to establish a quick trend or report for system troubleshooting.
c. System should allow user to copy, using simple operating system menu commands, trend /report data to a spreadsheet that management can use for trouble shooting, energy reporting, etc.

ii. Programmed Trends/Reports
a. System should provide a drop-down menu, by page, of all equipment where programmed trends/reports are available and link directly to these for viewing.

iii. Configured Trends/Reports
a. Within browser mode, user should be able to select any controlled point for trending and reporting.
b. New graphical trends should be able to show up to 5 user selectable points concurrently.
c. User should have the ability to save new trends and reports and view at later time showing all data since trend/report was created.

Q. Programming
i. General
a. Programming pages should be accessible through the web browser from the graphics display window, without requiring additional logon or opening new window.
b. Active links to programming should be available from all levels of graphics screens, i.e. floor plan, zone, etc. Link should access pertinent areas of programming for that screen.
c. Programming function should accept multiple concurrent users, without ‘bumping’ a current user offline when an additional user logs on. Further, only one user can have access to a specific system at a time for programming purposes.

ii. Editing
a. Edit capabilities should be available on programming pages
b. Programming pages should be graphical representations of live programming, i.e. pages should show actual data values as they change
c. Over-ride capabilities should be directly accessible from programming
d. Troubleshooting capabilities for each component should be confined to a single page.

iii. Scheduling
 a. Scheduling should be available for each individual device.
 b. Group scheduling should be provided whereby multiple device schedules can be modified concurrently without having to modify each schedule individually.

iv. Demand Control
 a. Demand control settings should be provided whereby individual and group set points are relaxed in response to energy pricing signals.
 b. Three demand levels should be provided by device.

R. Information Technology
 i. General
 a. Server control software should reside on hardware utilizing Linux (open source) operating system.
 b. Web client should be accessible via multiple browser systems other than Internet Explorer.
 c. All future versions of the control system software should be compliant with older versions.

 ii. Architecture
 a. System should be able to operate as an intranet without connectivity to campus backbone for setup and testing.
 b. System should operate via a single Internet Protocol (IP) address for each building, not multiple IPs.
 c. Any proprietary data within the system must be available either through database or flat-file exports.

 iii. Alarms
 a. System should be configured with a single alarm screen where alarms from multiple buildings are displayed.
 b. Active links should be provided from the alarm screen to the device in alarm for troubleshooting purposes.

2. PRODUCTS
 A. Approved native BACnet manufacturers / vendors:
 i. Alerton provided by Waypoint Systems, Inc.
 1455 Old Alabama Road, Suite 105
 Roswell, GA 30076
 770-649-6100
 ii. Automated Logic Corporation
 1150 Roberts Blvd.
 Kennesaw, GA 30144
 770-429-3000
 iii. Delta provided by Control Concepts
 3550 North Parkway, Suite 100
 Cummings, GA 30040
 770-888-0181

 B. All package equipment shall have BACnet communication interfaces.
C. Gauges:
 i. Gauges shall be 4.5” diameter.
 ii. Pressure gauges across all chiller heat exchangers shall be equal to Orange Research Delta-P gauges. Install with dirt legs and means of draining.

D. Digital temperature indicators across all chiller heat exchangers shall be equal to Weiss Instruments. Specify models that can send analog signal to front end.

E. Control valves on cooling and heating water coils and steam coils shall have 300:1 rangeability / turn-down. All valves and associated actuation shall be selected to operate and close tight at a valve differential pressure of 1.5 times the pump design head or the pump shut-off head.

F. High occupancy spaces shall have demand control ventilation (DCV). Basis of design CO₂ sensors shall be Telaire model 8002.

G. CTs shall be adjustable equal to Veris H708. On VSDs the CTs shall be self-calibrating equal to Veris H904; wet media differential pressure transducers shall be equal to Veris PW Series (or PW2 Series depending power supply availability).

H. UGA Athletic Association only
 i. Utilizes a Siemens TALON DDC control system which replaces the legacy system Staefa Control System in many of the UGA Athletic Association leased facilities. Design Professional shall coordinate with Project Manager as often the DDC control system contract is held directly by the UGA Athletic Association.
 ii. Approved Manufacturer / Vendor:
 Siemens / TALON provided by Control Concepts
 3550 North Parkway, Suite 100
 Cummings, GA 30040
 770-888-0181

3. EXECUTION
 A. Locate instrumentation, sensor wells, to allow removal and replacement without having to cause damage to or having to remove insulation, etc. show, to scale, on piping shop drawings. Well and sensor shall be matched to ensure accurate measurement of the medium
 B. Label all control elements to clearly indicate function; labels to match control wiring diagrams, schematics and BAS and graphics. Provide legend for each symbol used on both control drawings and graphics.
 C. Control sequences shall be written clearly and stated in a logical progression of events and/or actions for all modes of operation. Sequences shall be provided for both DDC controlled equipment and “packaged equipment”. The graphic screen for each item of equipment and system shall have a link to the associated ‘as-built’ sequence of operation. Package equipment suppliers shall provide sequences of operation specific for the equipment provided. (Although the packaged equipment may not be internally controlled by the BAS, UGA needs to understand the internal operation of the equipment and how it relates to the external system.)
 D. Electrical supply serving controls shall be permanently energized; one circuit will be provided per floor, all wiring and electrical work, including surge protection, from electrical termination point will be by the controls provider. Control panels associated with the HVAC BAS, the wiring in the panels, and the connections to the panels and all control elements shall be executed by the controls subcontractor. Subcontracted electrical work associated with the HVAC BAS shall be confined to conduits and wiring
between panels and controls devices. Control wiring shall be run in conduit. For exceptions permitted in the specification, wiring shall be independently supported, run continuously tight to and fixed to structure, J-hooks at approved spacing will be accepted. New wireways shall be installed in walls or chases. Surface mounted conduit and wire molding will no longer be used without written approval.

E. The controls contractor shall submit an as-built electronic copy of all programming done, including VAV terminal coefficients as set and calibrated by the TAB subcontractor.

F. Service
 i. Two year warranty on parts and labor required.
 ii. Maximum of 14 days response time to warranty items required.
1. GENERAL
 A. Related sections:
 i. 23 00 00 – General Mechanical Requirements (HVAC)
 B. A.H.U. Coil Piping Detail – Single Coil
 SCHEMATIC DRAWINGS FOR GENERAL REFERENCE ONLY

NOTES:
1. ALL SUPPLY AND RETURN HEADERS TO BE FULL SIZE FROM MAIN (SEE PLANS FOR PIPE SIZE).
2. ALL HORIZONTAL CONNECTIONS TO COILS FROM VERTICAL HEADERS TO BE SIZE OF COIL CONNECTIONS.
3. ALL COMPONENTS, INCLUDING DRAIN VALVE ADAPTER CAPS, TO BE RATED FOR FULL SYSTEM OPERATING PRESSURE.
4. CIRCUIT SETTER SHALL BE TURB ANDERSON, MODEL STAD, OR APPROVED EQUIVALENT.
5. INSTALL CONTROL VALVE PACKAGE IN HORIZONTAL PIPE RUN AS REQUIRED TO FACILITATE COIL REMOVAL.
C. A.H.U. Coil Piping Detail – Multiple Coils

Schematic Drawings for General Reference Only

NOTES:

1. All Supply and Return Headers to be Full Size from Main (see plans for pipe size).

2. All horizontal connections to Coils from Vertical Headers to be size of coil connections.

3. All components, including drain, valve and adapter caps, to be rated for full system operating pressure.

4. Circuit setter shall be Tor and Anderson, Model 564, or approved equal.

5. Install control valve package in horizontal pipe run as required to facilitate coil removal.
D. A.H.U. Coil Piping Detail – Hot Water Coil With Loop Pump

SCHEMATIC DRAWINGS FOR GENERAL REFERENCE ONLY

NOTES:
1. ALL SUPPLY AND RETURN HEADERS TO BE FULL SIZE FROM MAIN (SEE PLANS FOR PIPE SIZE).
2. ALL HORIZONTAL CONNECTIONS TO COILS FROM VERTICAL HEADERS TO BE SIZED OF COIL CONNECTIONS.
3. ALL COMPONENTS, INCLUDING SPAIN VALVE ADAPTER CAPS, TO BE RATED FOR FULL SYSTEM OPERATING PRESSURE.
4. CIRCUIT SETTER SHALL BE FOUR AND ANDERSON, MODEL SAD-1 OR APPROVED EQUAL.
5. INSTALL CONTROL VALVE PACKAGE IN HORIZONTAL PIPE RUN AS REQUIRED TO FACILITATE COIL REMOVAL.

LOOP PUMP SEQUENCE OF OPERATION:
1. WHEN THE OUTSIDE AIR TEMPERATURE DROPS BELOW 50°F (10°C), THE LOOP PUMP SHALL BE ENERGIZED.
2. THE THREE-WAY CONTROL VALVE SHALL MODULATE AS REQUIRED TO MAINTAIN 50°F SUPPLY AIR DISCHARGE TEMPERATURE.
3. THE LOOP PUMP SHALL SHUT OFF WHEN THE OUTSIDE AIR TEMPERATURE RISES ABOVE 52°F (11°C).
E. Fan Coil Unit & Terminal Unit Coil Piping Detail

SCHEMATIC DRAWINGS FOR GENERAL REFERENCE ONLY

NOTES:
1. ARRANGE ALL PIPING TO ALLOW REMOVAL OF COIL.
2. PIPING SHOWN IS DIAGRAMMATIC.
3. ALL COMPONENTS, INCLUDING DRAIN VALVE ADAPTER CAPS, TO BE RATED FOR FULL SYSTEM OPERATING PRESSURE.
4. CIRCUIT SETTERS SHALL BE TOURN AND ANDERSON, MODEL STAD, OR APPROVED EQUAL.
1. **GENERAL**
 A. Related sections:
 i. 23 00 00 – General Mechanical Requirements (HVAC)
 ii. 23 21 23 – Hydronic Pumps
 iii. 33 60 00 – Hydronic and Steam Energy Utilities
 B. Design Professional drawings shall show piping in mechanical rooms particularly at connections to coils and shall not leave piping installation to be left up to the Contractor. Provide at least one elevation view.
 C. The Contractor shall submit shop drawings for all gasket materials on jointing which shall include installation instructions and recommendations.
 D. Reference drawing are provided at the end of this section for Automatic Air Vent Detail and Manual Air Vent Detail.

2. **PRODUCTS**
 A. Underground chilled water supply and return piping shall be equal to Thermacor FERRO- THERM SC steel piping system with HDPE jacket ASTM D-1248, 0.1" thickness (minimum) for up to 12" diameter pipe, polyurethane foam insulation and a carrier pipe of the schedule indicated above. Fittings shall be factory insulated with pressure testable joint closure; leak detection wiring, connectors and monitoring panel.
 B. Red rubber gaskets are acceptable on chilled water lines but only with flat-faced flanges on both mating flanges. (Note: mis-matched flat and raised face flanges, on pipe and/or valve flanges, shall not be used).
 C. Pipe system air removal basis of design shall be Spirovent; devices shall be selected for 100% free, 100% entrained and 99% dissolved air removal; shop drawings shall clearly indicate this performance. The onus shall be on the Contractor and shop drawing reviewer to verify compliance of any substitutions with this performance.
 D. Grooved fittings shall not be used on chilled water or heating hot water without variance approval.
 E. Dielectric couplings shall be equal to Watts and Epco (rated for 300F on hot water).
 F. See section 33 60 00 Hydronic and Steam Energy Utilities for steam manhole covers.

3. **EXECUTION**
 A. Buried pre-insulated pipe shall be installed in accordance with the manufacturer’s installation instructions and recommendations and shall be laid on a minimum 6" deep sand bed and a minimum 12" backfill of sand on top of pipe.
 B. Provide detectable aluminum foil plastic backed tape or detectable magnetic plastic tape manufactured specifically for warning and identification of buried utility.
 C. Thrust blocks shall be poured in place and inspected by UGA utility personnel prior to covering up.
 D. The manufacturer of the pre-insulated pipe shall prepare field verified installation shop drawings prior to fabrication and installation; the manufacturer’s authorized representative shall field inspect installation and testing; the contractor shall provide exact as-installed record “as-built” including GIS location of pipe and depth of bury. The manufacturer’s representative shall check the leak detection wiring, for continuity, prior to back filling.
E. Welding of schedule 40 and 80 pipe: Welder certification to be 6G position with the specified rods. All root passes should be welded with 1/8" 60-10 rod; run hot pass (2nd pass) with 70-18 low hydrogen rod; use 70-18 low hydrogen rod for cap (3rd) pass; 4th pass, if required, to be same as 3rd.

F. Flange bolts shall be torqued as recommended by the manufacturer.

AUTOMATIC AIR VENT DETAIL

SCHEMATIC DRAWINGS FOR GENERAL REFERENCE ONLY

NOTES:
1. VENT ALL HIGH POINTS AS INDICATED ABOVE.
2. PROVIDE BALL VALVE IN ACCESSIBLE LOCATION WHERE DISCHARGE FROM TUBING CAN BE OBSERVED. PROVIDE AAV WHERE INDICATED. PROVIDE BALL VALVE AHEAD OF AAV.
MANUAL AIR VENT DETAIL

SCHEMATIC DRAWINGS FOR GENERAL REFERENCE ONLY

NOTES:
1. VENT ALL HIGH POINTS AS INDICATED ABOVE.
2. PROVIDE BALL VALVE IN ACCESSIBLE LOCATION WHERE DISCHARGE FROM TUBING CAN BE OBSERVED.
23 21 23
HYDRONIC PUMPS
(For chilled and condenser water)

1. GENERAL
 A. Related sections:
 i. 23 00 00 – General Mechanical Requirements (HVAC)
 ii. 23 21 13 – Hydronic Piping

2. PRODUCTS
 A. Basis of design shall be Patterson Pump Company.
 B. Shall have bronze wear rings, external seal flush line, silicon carbide seals and tungsten carbide seals on chilled and condenser water systems respectively.

3. EXECUTION
 A. Pipe connections shall be installed in such a manner as not to put stress on the seal.
 B. Provide all pumps with start-up strainer to be removed before handover.
 C. Pump base shall be properly grouted and pump and motor aligned per the manufacturer’s instructions and recommendations.
 D. Pump impellers, on oversized pumps, shall be skimmed for peak flow of no more than 5% of maximum design flow the current project.
 E. The manufacturer or factory authorized representative shall inspect the installation and submit certification that the pumps installations are in accordance with installation instructions and good engineering practice.
1. GENERAL
 A. Related sections:
 i. 23 00 00 – General Mechanical Requirements (HVAC)
 ii. 23 22 16 – Steam and Condensate Heating Piping Specialities
 iii. 33 60 00 – Hydronic and Steam Energy Utilities
 B. Heating shall be steam; supply pressure to the building is 100 psig; reduce inside building at pipe entry; provide drip set immediately upstream of PRV station. PRV installation shall comply with manufacturer’s installation instructions and recommendations. Provide pressure gauge downstream and P/T ports up and downstream of every PRV.
 C. UGA requires the use of expansion loops; expansion joints require variance approval.
 D. For underground steam piping the manufacturer of the pre-insulated pipe shall provide field verified installation shop drawings to the Contractor, Design Professional, and the Project Manager prior to fabrication and installation.

2. PRODUCTS
 A. Above Ground Steam Piping
 i. Steam piping shall be steel, ASTM A53, Schedule 40 seamless steel with welded joints.
 ii. Steam condensate piping shall be Schedule 80.
 B. Underground Steam Piping
 i. High/Medium Pressure Steam Piping (greater than 50 psig)
 a. Acceptable Manufacturers:
 1) Perma-Pipe Multi-Therm 500
 2) Thermacor Duo-Therm 505
 3) In certain cases, Thermacor HT-406 is allowed. Design Professional is to inquire with Project Manager.
 ii. Low Pressure Steam Piping (less than 50 psig)
 a. Acceptable Manufacturers:
 1) Perma-Pipe Multi-Therm 500
 2) Thermacor HT-406
 iii. Steam Condensate
 a. Acceptable Manufacturers:
 1) Perma-Pipe Escon-A/Ferro-Shield
 2) Thermacor HT-406
 C. See section 33 60 00 Hydronic and Steam Energy Utilities for steam manhole covers.

3. EXECUTION
 A. Underground Steam Piping:
 i. The manufacturer’s authorized representative shall field inspect installation and testing.
 ii. The Contractor shall provide exact as-installed record “as-built” including GIS location of pipe and depth of bury.
 iii. Underground piping shall contain leak detection wire. The manufacturer’s representative shall check the leak detection wiring, for continuity, prior to back filling.
1. **GENERAL**
 A. Related sections:
 i. 23 00 00 – General Mechanical Requirements (HVAC)
 ii. 23 22 13 – Steam and Condensate Heating and Piping

2. **PRODUCTS**
 A. **Ball Joints**
 i. Equal to Hyspan Type N Style I
 B. **Control Valves**
 i. Equal to Armstrong International Inc. or Jordan Valve
 C. **Expansion Joints**
 i. Equal to Hyspan – Packed Type
 D. **Gaskets:**
 i. For steam piping joints shall be equal to spiral-wound metallic - Flexitallic, Flexite Super metallic spiral wound type, 304 SS (minimum) with non-asbestos mineral filler ring-type gaskets in conformance with ANSI B16.20.
 ii. Steam and condensate and heating hot water lines shall be cycled through heat-up and cool-down and joints inspected for leaks and tightened as needed (at least twice, after 2 months and after 9 months during the warranty period).
 E. **Pilot Valves**
 i. Equal to Spence Engineering Company, Inc. Type D Pressure Pilot
 F. **Pressure Reducing Stations**
 i. Equal to Spence Engineering Company, Inc. Type E Main
 G. **Relief Valves**
 i. Equal to Kunkle or Spence Engineering Company, Inc.
 H. **Valves**
 i. 1/8”-2” – threaded gate valves equal to Nibco Inc. or Milwaukee Valve
 ii. 2-20” – triple offset with normal gate takeouts, 150 lb. class equal to Vanessa or Adams Valves
1. **GENERAL**
 A. Related sections:
 i. 23 00 00 – General Mechanical Requirements (HVAC)
 ii. 23 64 16.16 – Water-Cooled Centrifugal Water Chillers
 iii. 23 65 00 – Cooling Towers
 B. **For UGA Athens Campus Only** - HVAC water treatment company responsible for all water treatment on campus is:
 i. Technical Specialties Corporation (TSC)
 ii. Contact person is David J. Lloyd, ph. 800-343-0538; Cell Phone: 404-933-9596; E-mail: GAWaterboy@aol.com.
 iii. TSC shall be employed by the Contractor on all new and renovated condenser water, chilled and heating hot water plant to review design, preparation, cleaning, flushing and start-up.
 C. **For UGA Athletic Association Only** – HVAC water treatment company responsible for all water treatment of Board of Regents of the University System of Georgia facilities that are leased and maintained by the UGA Athletic Association:
 i. Control Concepts, 770-888-0181

2. **PRODUCTS**
3. **EXECUTION**
 A. Provide corrosion coupon test rack upstream of water treatment controller and blow-down solenoid, to include three test stations for steel and 1 for copper. Test steel coupons after exposure for 30, 60, and 90 days and submit evaluation to Project Manager. Test steel and copper coupons prior to expiration of first year warranty and submit evaluation to Project Manager.
 B. New and renovated condenser water system installations shall be visited quarterly during the warranty period by the water treatment company and evaluation report submitted.
1. GENERAL
 A. Related sections:
 i. 23 00 00 – General Mechanical Requirements (HVAC)
 ii. 23 07 13 – Duct Insulation
 B. Duct distribution layout shall allow the total air flows on all air moving devices to be
 accurately measured by air flow measuring devices and by pitot traverses (by TAB agency).
 C. All supply air, and exhaust systems after the fan, ductwork shall be sealed using UL 181
 B listed duct sealant similar or equal to Foster 32-19 non-fibrated to SMACNA seal class
 “A”. At the contractor’s option longitudinal joints on supply air ductwork downstream of
 VAV terminals and return air need not be sealed however the leakage class specified
 shall be achieved. Connections at all duct branches, spin-ins, fire/smoke dampers, in-
 duct equipment, etc., shall be sealed.
 D. SMACNA Leakage Class shall be 6/3 upstream of VAV terminals; 12/6 downstream of
 VAV terminals; All supply air ducts upstream of VAV terminals and elsewhere as deemed
 necessary by the design professional (high humid areas where condensation can occur,
 etc.) shall be leak tested as well as all the return air ductwork located outside the
 building insulated vapor/water barrier envelope. The tests shall be witnessed by UGA-
 FMD personnel. Duct leakage tests shall be performed by the TAB agency and the TAB
 report shall clearly indicate the amount of leakage measured (difference between that
 measured at outlets and that at duct traverse(s). The duct section(s) to be tested shall
 be selected by the owner.
 E. Duct leakage tests shall be done with fire dampers, duct access doors, flexible duct
 connector run-outs, etc., installed.
 F. Strap hangers or any other duct installation method utilizing screws or rivets through
 the ductwork shall not be used.
 G. Flexible ducts shall be max 5 ft. long, installed free of kinks and connected at
 terminations with Flexmaster "Quick Release - LS Series" stainless steel clamps.
 H. Internal duct liner anywhere downstream of filter banks, including inside equipment
 such as AHU’s, FCU’s, VAV terminals, etc. is prohibited.
 I. Hangers shall be installed completely outside the duct vapor barrier. Rigid, non-
 compressible (under the load), inserts shall be provided between duct and hanger in
 such a manner that the insert is sealed to the butting insulation on either side and vapor
 proofed continuously through the hanger.
 J. Each duct branch shall have a MVD; splitter dampers shall not be used; dampers at air
 registers shall not be used for primary balance.
 K. In addition to spot-pins, adhere insulation to ducts with 100% coverage of fire retardant
 adhesive Foster 85-65. The use of staples on insulation will not be permitted.
 L. Measuring station shall be capable of continuously monitoring the airflow volume of the
 duct served and electronically transmitting a signal linear to the airflow volume, Airflow
 measuring devices shall be of the insertion type, or built into ductwork to suit the
 system configuration and shall be capable of measuring velocity over the range 375 to
 7000 FPM with +/- 2% accuracy. Devices shall be selected by the manufacturer or
 authorized representative, and installed in accordance with the manufacturer’s
 installation instructions and recommendations, Standard Materials shall be aluminum
bars with aluminum and ABS or aluminum sensors. Support bars over one foot in length shall be supported on both ends; in corrosive air streams, sensors and support bars, shall be of corrosion resistant materials. Velocity sensors shall not be affected by dust, lint, temperature, pressure, or humidity. The sensors shall be passive in nature, with no active parts within the air stream. The output from individual sensors shall be linear with respect to airflow velocity and shall be capable of sensing airflow in one direction only. The velocity sensors shall not require calibration. The transmitter shall provide a scale-able output over the full range of control of the unit, via on-board adjustments. The output signal of the transmitter shall be industry standard electronic signals, selectable on-board via jumpers or switches, for 4-20ma, 1-5vdc or 2-10vdc. Power requirement for the transmitter shall be 24VAC or DC. The device and associated controls shall be native Bacnet compatible Measurement system accuracy shall be plus or minus 2% of volumetric airflow rate. Turndown capability shall be at least 15:1.

M. The airflow measuring device shall be Vortek VT series (IAQ 2000 for outdoor sensor) manufactured by Tek-Air Systems or approved equal.
1. **GENERAL**
 A. Related sections:
 i. 23 00 00 – General Mechanical Requirements (HVAC)

2. **PRODUCTS**
 A. Basis of design shall be TAMCO 1000 for typical indoor, non-corrosive applications.
 B. Dampers shall have aluminum frame with airfoil aluminum blades; shall be flanged with full face area matching the duct internal dimension where used for balancing, to reduce pressure loss.
 C. Linkage shall be concealed in frame outside air stream and accessible for inspection in multi section assembly.
 D. Blade seals shall be silicon, EPDM or vinyl.
 E. Axle material shall be plated steel or aluminum.
 F. Jamb seals shall be silicon or flex stainless steel; shall be AMCA labeled AMCA leakage rated AMCA Class 1 (4cfm/sq-ft maximum with 1” pressure).
 G. Shall be ‘no maintenance construction’ and have a 5 year manufacturer warranty.
 H. Flow control dampers size shall be determined by the Design Professional and verified by the controls subcontractor and the damper manufacturer to ensure proper control damper authority.
1. GENERAL
 A. Related sections:
 i. 11 53 13 – Laboratory Fume Hoods
 ii. 23 00 00 – General Mechanical Requirements (HVAC)

ROOF CURB FOR EXHAUST FAN TYPICAL DETAIL
SCHEMATIC DRAWINGS FOR GENERAL REFERENCE ONLY

DETAIL – CURB CONSTRUCTION

DETAIL – FAN DISCHARGE STACK

NOTES:
1. CRICKETS SHALL BE LOCATED ON HIGH SIDE OF CURB.
2. THESE DETAILS APPLICABLE TO 3’ x 3’ FRAME MAX
3. PROVIDE GUY WIRES FOR FUME HOOD STACKS OVER 10’-0” ABOVE ROOF.

DIA. 4” @ 1500 FPM:
4’ HOOD 550 CFM 6’
5’ HOOD 700 CFM 9’
6’ HOOD 850 CFM 10’

DIA. D, @ 3000 FPM:
4’ HOOD 550 CFM 5.25’
5’ HOOD 700 CFM 6.1’
6’ HOOD 850 CFM 7’
FLEXIBLE CONNECTION FOR EXHAUST FAN

SCHEMATIC DRAWINGS FOR GENERAL REFERENCE ONLY

SEE "EXPLODED VIEW OF FLANGED CONNECTION" DETAIL FOR CONSTRUCTION OF FLANGES

FAN INLET

2½" 3" 2½"

EXHAUST DUCTWORK

2" NEOPRENE FLEXIBLE CONNECTION WITH UV INHIBITOR

REFER TO SMACNA "DUCT CONSTRUCTION STANDARDS, METAL AND FLEXIBLE", THIRD EDITION (2005), FIGURE 7-9.
EXPLODED VIEW OF FLANGED CONNECTION – TYPICAL FOR ALL EXHAUST DUCTS
SCHEMATIC DRAWINGS FOR GENERAL REFERENCE ONLY

NOTE:
THIS DRAWING IS NOT APPLICABLE FOR THROUGH-THE-WALL (TTW) SENSING OR FOR VAV FUME HOODS.
1. **GENERAL**
 A. Related sections:
 i. 23 00 00 – General Mechanical Requirements (HVAC)
 ii. 23 25 00 – HVAC Water Treatment
 A. Chillers shall be provided with Bacnet communication and shall utilize R134a.
 B. Chillers shall generally be selected for 10F chilled water temperature drop.
 C. Piping shall be primary/secondary with decoupler to match other chiller configurations and control on the loop.
 D. Design Professional shall provide noise levels and options for sound dampening.

2. **PRODUCTS**
 A. Shall have multiple independent refrigerant circuits
 B. Acceptable manufacturers:
 i. Carrier
 ii. Trane
 iii. York
1. **GENERAL**
 A. Related sections:
 i. 23 00 00 – General Mechanical Requirements (HVAC)
 ii. 23 25 00 – HVAC Water Treatment
 B. Chillers shall be provided with Bacnet communication and shall utilize R134a.
 C. Chillers shall generally be selected for 10F chilled water temperature drop.
 D. Piping shall be primary/secondary with decoupler to match other chiller configurations and control on the loop.

2. **PRODUCTS**
 A. All water-cooled Centrifugal chillers above 300 tons shall have VSD.
 B. Water cooled chillers shall include marine water-boxes with hinged covers.
1. **GENERAL**
 A. Related sections:
 i. 23 00 00 – General Mechanical Requirements (HVAC)
 ii. 23 25 00 – HVAC Water Treatment
 iii. 26 29 23 – Variable-Frequency Motor Controllers
 B. Design Professional shall discuss suitability of a cooling tower system that does not require chemical water treatment with the Project Manager.
 C. Cooling towers shall have fully welded stainless steel cold water/lower basins (no bolted sumps) and stainless steel hot/upper sumps
 D. Motors in air stream shall be Totally Enclosed, Air Over (TEAO).
 E. Vertical shaft bearings shall have rain seals
 F. Provide float valve(s) on make-up(s).
 G. Concrete basins shall be sand blasted and pressure cleaned prior to applying bonding agent and coating under required temperature and humidity conditions. All coating processes must be observed by UGA or CxA.
 H. Fans drives shall be VSD.
 I. Condenser water/cooling tower shall have a solid separator filtration system and tower basin cleaning system.
1. **GENERAL**
 A. Related sections:
 i. 23 00 00 – General Mechanical Requirements (HVAC)
 B. Design Professional shall discuss selection, location and model number of AHU(s) with UGA in the early stages of design.

2. **PRODUCTS**
 A. AHUs over 3000 cfm
 i. Select cooling coils for 450 fpm max face velocity and entering water 1F above the design chilled water supply temperature.
 ii. AHUs shall be modular, double walled; operate without condensation forming on exterior surfaces under any and all anticipated operating conditions.
 iii. AHU shall have a leakage rate of 1% or less at 10” pressure.
 iv. Cooling coils:
 a. Coil tube diameter shall be 5/8” minimum, tube thickness of .020”, and minimum aluminum fin thickness of .008”.
 b. Cooling coils shall have a minimum of 6 row cooling coils and maximum of 8 row cooling coils.
 c. Fin spacing shall not exceed 10 fpi. Fin height on cooling coils shall be limited to 39” for all units that are 100% outside air.
 d. Provide multiple sections with drain pan where 39” has to be exceeded.
 v. Drain pans:
 a. 8 gauge stainless steel
 b. Multiple section cooling coils shall have intermediate drain pans.
 c. Drain pans to be sloped, IAQ type, to prevent standing water from accumulating in pans.
 vi. Filters:
 a. Filter efficiency shall suit the application and be MERV 11 minimum where application does not dictate higher efficiency.
 b. Specified sizes shall be limited to 24x24xD; 12x24xD; 20x20xD; 16x20xD; 16x25xD; 20x25xD. The depth ‘D’ will depend on the application (Design professional to discuss with UGA). Face velocity shall be the same or less than 450 fpm.
 c. On units 78” and less in height, use side access filter sections.
 d. On units greater than 78” high, use upstream access filter sections.
 vii. AHUs with chilled water coils shall have pre-heat coils.
 viii. Heating coils shall be heating hot water. Steam heating coils shall not be used without variance approval.
 ix. Air blenders shall be provided on AHUs units that contain mixing boxes designed and configured to ensure proper mixing of outdoor and return air and to prevent “nuisance” freeze stat trips. If space does not allow for the use of air blenders, mix air in ductwork prior to entering the mixing plenum, or utilize baffles inside the mixing plenum to ensure proper air mixing.
 x. Units shall have access doors on filter, coil (up-stream, down-stream and between coils), and fan.
xi. UV disinfection system:
 a. The device shall be classified by UL (Underwriters Laboratories) as an Air Duct Mounted Accessory and meet all applicable UL standards. Manufactures UL file number shall be permanently marked on the exterior of the product.
 b. Shall be of stainless steel and aluminum construction. Any exposed screws or fasteners shall be stainless steel.
 c. Approved UV lights shall be provided at all cooling coils.
 d. On units 78” and less in height, UV light racks shall be side accessible slide out type, to slide out of units for changing bulbs.
 e. On units greater than 78” high, utilize stationary UV racks.
 f. Every access door on the AHU that allows persons to see the UV lights shall have a lock-out-tag-out safety.
 g. The UV dosage shall be calculated for probable rating of URV-13, 99% air disinfection (S. marcescens) at air velocity and temperature and shall be adequate to deactivate microbial growth on all exposed surfaces.
 h. Lamps:
 1) Lamps shall be positioned for a 360-degree disinfection zone. Lamp supports shall be stainless steel.
 2) The lamp shall be generic, available on the open market and not product specific. Lamps shall be Philips, GE, Sylvania, Ushio or UGA preapproved equal.
 i. UV disinfection system shall be warranted to be free of defects in workmanship and material for a period of 5 years from date of Material Completion.

xii. Face-and-by-pass damper control shall not be used without UGA-FMD approval. If IFB coils are permitted to be utilized, dampers shall shut off tight to prevent air leakage through damper assembly to coil.

xiii. Select most efficient fan for the application; specify highest efficiency motor available (NEMA Premium); consider fan curves over full range of anticipated operation.

xiv. All air handling units shall have a base rail for unit support and coil trapping. Base rail height shall be sized such that the cooling coil may be trapped without chipping or penetrating the floor. Base rails shall be 5” minimum and higher if 4” housekeeping pad cannot be provided.

xv. Each section/module shall have an interior light. Lights shall be factory wired to a single light switch with GFI outlet located adjacent to the fan access door. Access doors shall have a view window.
26 00 00
GENERAL ELECTRICAL REQUIREMENTS

1. **GENERAL**

 A. **Related sections:**

 i. 01 81 00 – Facility Performance Requirements
 ii. 26 05 19 – Low-Voltage Electrical Power Conductors and Cables
 iii. 26 05 26 – Grounding & Bonding for Electrical Systems
 iv. 26 05 33.13 – Conduit for Electrical Systems
 v. 26 05 43 – Underground Ducts and Raceways for Electrical Systems
 vi. 26 09 23 – Lighting Control Devices
 vii. 26 09 36 – Modular Dimming Controls
 viii. 26 09 43.16 – Addressable Fixture Lighting Control
 ix. 26 22 00 – Low-Voltage Transformers
 x. 26 24 13 – Switchboards
 xi. 26 24 16 – Panelboards
 xii. 26 24 19 – Motor-Control Centers
 xiii. 26 29 23 – Variable-Frequency Motor Controllers
 xiv. 26 32 00 – Packaged Generator Assemblies
 xv. 26 41 00 – Facility Lightning Protection
 xvi. 26 51 00 – Interior Lighting
 xvii. 26 56 00 – Exterior Lighting
 xviii. 26 56 13 – Lighting Poles and Standards
 xix. 26 56 16 – Parking Lighting
 xx. 26 56 19 – Roadway Lighting
 xxi. 26 56 29 – Site and Building Entry Lighting
 xxii. 26 56 33 – Walkway Lighting
 xxiii. 26 56 36 – Flood Lighting
 xxiv. 27 00 00 – General Communications Requirements
 xxv. 33 71 18 – Electrical Underground Ducts & Manholes

 B. **Power Distribution Design**

 i. **For UGA Athens Main Campus Only:** The power for campus originates at a coal generated power plant on campus. All medium voltage work on campus is performed by FMD. The Project Manager will provide guidance as to whether the cost of any required high voltage work will be included in the Cost of the Work, the Bid, or if it will be a direct project cost. The Design Professional will coordinate with the Project Manager and FMD to verify which scope of Work that will be provided by FMD and which Work will be provided by the Contractor. Typically building service transformers and loop feed switches will be provided by FMD and installed by FMD. FMD will supply and install 15 kVa cables and associated splice kits and termination kits and revenue metering equipment.

 ii. The power for UGA Athens Health Sciences Campus and Board of Regents properties along South Milledge, Athens, Georgia is provided by Georgia Power.
iii. Empty ductbanks, concrete pads, etc., related to the medium voltage work will be by the Contractor and FMD will set the building service transformers and install the associated high voltage cabling.

iv. One line diagram showing incoming service(s), emergency generator, switchgear/switchboard ratings, breaker sizes and feeder sizes shall be furnished for each facility. All downstream equipment ratings such as motor control centers (MCCs) and panelboards etc. shall be indicated. Existing one line diagram shall be updated for all renovation projects. Partial one line diagrams are not acceptable. When exiting one line diagrams are not available, one shall be created based on existing riser diagram and field survey. This requirement is for the benefit of arc fault implementation in the future.

v. Power riser diagrams for multistory facilities shall be furnished addition to one line diagrams. Riser diagrams for single story buildings are optional.

vi. Circuit breaker settings shall be furnished as part of the engineering design. Settings shall be based on the short circuit calculations which are an integral part of the engineering scope.

vii. Power plans shall indicate all electrical apparatus including wall receptacles, panel boards, emergency generators, universal power supplies, MCCs and HVAC equipment etc. and all the associated wiring.

viii. Detail schedules showing connected loads for each circuit shall be furnished for each panel board. The schedules shall entail such information as connected kVA, type of load, location of load and electrical characteristics such as number of poles and ampere rating for each circuit. Total connected load for each phase shall be furnished for each panel.

ix. Electrical load tabulation and calculations shall be provided to the Project Manager. The Project Manager will coordinate with the FMD to confirm acceptance of the Design Professional's design for the building service transformer capacity, associated pad, opening, and manhole sizes and locations, underground vault locations and size, and routing of all medium voltage ductbanks. Load tabulation shall include types of load such as lighting, chillers, air handlers, pumps, elevators, general purpose outlets, dedicated outlets for dedicated equipment etc. A diversity factor for each type of load shall also be included. This task also serves the basis of determination switchgear capacity.

x. All existing equipment (switchboards, panelboards, motors, circuit breakers, transformers etc.) that are associated with the project shall be verified and assessments shall be made if modifications and/or upgrades are required. All existing panelboards associated with the project shall be surveyed and recorded by the Design Professional.

xi. Design Professionals shall furnish design associated with secondary feeders, duct banks and the routing to the incoming service switchgears. Design Professionals shall instruct Contractors to furnish and install all medium voltage duct banks, manholes, vaults and transformer pads. Contractors shall also install FMD furnished transformers and loop feed switches.

xii. Building services transformers, its primary and secondary duct banks, outdoor switches etc. shall be located on electrical site plan.
C. Transformer CT Sizing Table provided for general reference below:

208/120 V

<table>
<thead>
<tr>
<th>TRANSFORMER SIZE (kVA)</th>
<th>FULL LOAD AMPS (FLA)</th>
<th>125% FLA</th>
<th>CT SIZE</th>
<th>ALTERNATE CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>416.67</td>
<td>520.83</td>
<td>500 to 5</td>
<td>None</td>
</tr>
<tr>
<td>225</td>
<td>625.00</td>
<td>781.25</td>
<td>800 to 5</td>
<td>700 to 5</td>
</tr>
<tr>
<td>300</td>
<td>833.33</td>
<td>1041.67</td>
<td>1000 to 5</td>
<td>None</td>
</tr>
<tr>
<td>500</td>
<td>1388.89</td>
<td>1736.11</td>
<td>1500 to 5</td>
<td>2000 to 5</td>
</tr>
<tr>
<td>750</td>
<td>2083.33</td>
<td>2604.17</td>
<td>2500 to 5</td>
<td>None</td>
</tr>
<tr>
<td>1000</td>
<td>2777.78</td>
<td>3472.22</td>
<td>3500 to 5</td>
<td>3000 to 5</td>
</tr>
<tr>
<td>1500</td>
<td>4166.67</td>
<td>5208.33</td>
<td>5000 to 5</td>
<td>None</td>
</tr>
</tbody>
</table>

480/277 V

<table>
<thead>
<tr>
<th>TRANSFORMER SIZE (kVA)</th>
<th>FULL LOAD AMPS (FLA)</th>
<th>125% FLA</th>
<th>CT SIZE</th>
<th>ALTERNATE CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>180.72</td>
<td>225.90</td>
<td>200 to 5</td>
<td>250 to 5</td>
</tr>
<tr>
<td>225</td>
<td>271.08</td>
<td>338.86</td>
<td>400 to 5</td>
<td>300 to 5</td>
</tr>
<tr>
<td>300</td>
<td>361.45</td>
<td>451.81</td>
<td>500 to 5</td>
<td>400 to 5</td>
</tr>
<tr>
<td>500</td>
<td>602.41</td>
<td>753.01</td>
<td>700 to 5</td>
<td>750 to 5</td>
</tr>
<tr>
<td>750</td>
<td>903.61</td>
<td>1129.52</td>
<td>1000 to 5</td>
<td>None</td>
</tr>
<tr>
<td>1000</td>
<td>1204.82</td>
<td>1506.02</td>
<td>1500 to 5</td>
<td>None</td>
</tr>
<tr>
<td>1500</td>
<td>1807.23</td>
<td>2259.04</td>
<td>2000 to 5</td>
<td>2500 to 5</td>
</tr>
<tr>
<td>2000</td>
<td>2409.64</td>
<td>3012.05</td>
<td>3000 to 5</td>
<td>2500 to 5</td>
</tr>
<tr>
<td>2500</td>
<td>3012.05</td>
<td>3765.06</td>
<td>4000 to 5</td>
<td>3500 to 5</td>
</tr>
<tr>
<td>3000</td>
<td>3614.46</td>
<td>4518.07</td>
<td>5000 to 5</td>
<td>4000 to 5</td>
</tr>
</tbody>
</table>
LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS & CABLES

1. GENERAL
 A. Related sections:
 i. 26 00 00 – General Electrical Requirements
 ii. 26 05 33.13 – Conduit for Electrical Systems

2. PRODUCTS
 A. All building power wiring shall be 600V copper, type THWN or XHHW 75 degrees C.
 B. Metal Clad (MC) cables are not allowed except in limited situations:
 i. MC cables are permitted to be installed in raised computer floors where utilized as air plenums.
 ii. MC cable is permitted for flexible connections to lighting fixtures and fire alarm devices.
 iii. In some renovations, MC cables may be used in select situations pending variance approval.
 C. Conductors
 i. Specified gauge sizes refer to American Wire Gauge copper conductors. All wire and cable shall be of soft drawn, annealed copper having a conductivity of not less than 98% of that of pure copper; each wire continuous without weld, splice, or joint throughout its length; uniform in cross section and free from flaws, scales, and other imperfections.
 ii. No aluminum allowed.
 iii. All conductors shall have 600-volt insulation.
 iv. Conductors No. 10 and smaller shall be solid.
 v. Conductors No. 10 and larger shall be stranded.
1. **GENERAL**

A. Related sections:
 i. 26 00 00 – General Electrical Requirements

B. Incoming building service shall be grounded per NEC. In most buildings, the power system is either 208/120V wye or 480/120V wye solidly ground. 240/120V single phase with grounded center tap neutral are common in Student Apartments and fraternity housing.

C. All buildings shall be provided with a grounding grid. Dependent upon project requirements, “grid” may be as simple as three grounding rods or consist of a buried bare copper grounding conductor around the perimeter of the building connecting to the structural steel, re-bars of the foundation etc.

D. All grounding connections that are buried in the ground shall use exothermic methods.

E. For new facilities, at least one grounding test well shall be provided.

F. Any grounding resistance test with less than 25 ohms (per NEC) shall not be acceptable.

G. For “isolated grounded” receptacles, the ground conductors shall be connected to dedicated grounding rod(s) and not connected to the building ground system.

H. All motors driven by VFDs with shaft grounding rings shall be grounded to their source ground with no more than 25 ohms in resistance measurement.
1. **GENERAL**
 A. Related sections:
 i. 26 00 00 – General Electrical Requirements
 ii. 26 05 19 – Low-voltage Electrical Power Conductors and Cables

2. **PRODUCTS**
 A. Minimum conduit size shall be 3/4” diameter.
 i. Exception: 3/8” flexible metal conduit or Type AC or MC is permitted for flexible connections to lighting fixtures and fire alarm devices.
 B. Conduit for fire alarm shall be painted red.
1. **GENERAL**
 A. Related sections:
 i. 26 00 00 – General Electrical Requirements
 ii. 26 20 00 – Low Voltage Transformers
 iii. 26 56 00 – Exterior Lighting
 iv. 33 71 19 – Electrical Underground Ducts & Manholes

2. **PRODUCTS**
 A. All medium voltage duct banks shall be 6 (six) inch diameter schedule 40-Type EB PVC, concrete encased, no exceptions are allowed.
 B. Duct banks crossing roadways and driveways shall be reinforced with re-bars.

3. **EXECUTION**
 A. Slope duct away from building entrances.
1. **GENERAL**
 A. Related sections:
 i. 26 00 00 – General Electrical Requirements
 ii. 26 09 36 – Modular Dimming Controls
 iii. 26 09 43.16 – Addressable Fixture Lighting Control
 iv. 26 51 00 – Interior Lighting

2. **PRODUCTS**

3. **EXECUTION**
 A. Occupancy based lighting controls system commissioning:
 i. Upon completion of the installation, the system shall be completely
 commissioned by the manufacturer’s factory authorized technician who will
 verify all adjustments and sensor placement to ensure a trouble-free
 occupancy-based lighting control system.
 ii. The manufacturer’s factory authorized technician, shall upon completion of
 the commissioning, provide a written report to the Contractor, Design
 Professional, and Project Manager indicating completion of the Work. This
 report shall also indicate any corrective actions required on the part of the
 Contractor.
1. **GENERAL**

 A. Related sections:

 i. 26 00 00 – General Electrical Requirements

 ii. 26 09 23 – Lighting Control Devices

 iii. 26 09 43.16 – Addressable Fixture Lighting Control

 iv. 27 41 00 – General Audio-Visual Systems Requirements

 v. 27 41 00.01 – Audio-Visual Control Systems

 vi. 26 51 00 – Interior Lighting

 B. Classroom Automated Lighting Presets Minimum. All classrooms shall have the following minimum presets are required for classrooms. Refer to 27 41 00.01 for detailed information on audio-visual touch panel interface requirements with lighting. All classrooms shall have dimmable fluorescents or dimmable LEDs with low voltage or addressable controls. For classroom lighting presets, refer to section 26 09 36 Modular Dimming Controls and 27 41 00.01 – Audio-Visual Control Systems. Strategic zone switching (especially in smaller classrooms) may be approved through the variance process. Lighting systems shall operate independently from audio-video presentation systems, even when integrated together. The information is general guidance as to the recommended lighting configuration for each preset, but does not include and is not intended to specify every aspect of the required setting. Through the Project Manager, coordinate with the UGA Center for Teaching and Learning as needed.

 i. **Preset/Scene 1 – Full On**

 a. All light fixtures **ON**

 b. All dimmable fixtures set at full brightness

 ii. **Preset/Scene 2 – Normal Projection Mode**

 a. Fixtures in front 1/3 of room **OFF**

 b. ANY other fixtures in the room which produce noticeable wash on the projection screens should be **OFF**

 c. Any spot lights or down lights which illuminate the instructors podium should be full on, UNLESS they produce a noticeable wash on the projection screen in which case they should be dimmed or turned off.

 d. The lighting in rear 2/3 of room should be set to be comfortable for reading and writing but not overpowering the image of the video projection system. Options are as follows:

 1) If none of the fixtures in the room are dimmable then turn on half of the fixtures in the rear 2/3 of the room.

 2) If all of the fixtures in the room are dimmable then set them at a reasonable level (eg. 60%).

 3) If there are a combination of dimmable and non-dimmable circuits then choose a combination which is comfortable for reading and writing but not overpowering the projector image.

 iii. **Last Preset/Scene – All Off**

 a. **ALL Fixtures in room OFF**
b. There should be a delay from when this button is hit to when the lights are fully off. The delay should be long enough to allow the user to exit the room before the lights are fully off.

C. Presenter Mode – For classrooms with whiteboard or blackboard behind projector screen.
 i. Preset/Scene 3 – Presenter Mode
 a. Fixtures in front 1/3 of room FULL ON.
 b. Any spot lights or down lights which illuminate the instructors podium should be FULL ON.
 c. Any spot lights illuminating the Whiteboard or Blackboard should be FULL ON.
 d. The light fixtures in rear 2/3 of room should be set as described for Preset 2 above.

D. Movie Projector Mode
 i. Preset/Scene 4 – Movie Projection Mode
 a. Fixtures in front 1/3 of room OFF
 b. ANY other fixtures in the room which produce noticeable wash on the projection screens should be OFF
 c. The lighting in rear 2/3 of room should be set to be dim but with enough brightness to make it safe for audience members to walk in the aisles and stairways. Options are as follows:
 1) If none of the fixtures in the room are dimmable then turn on only the minimum number of fixtures in the rear 2/3 of the room.
 2) If all of the fixtures in the room are dimmable florescent lights then set them at the minimum dimming level allowed by the fixtures without flickering. Alternating fixture may also be turned completely off to provide a minimum safe level.

2. PRODUCTS
3. EXECUTION
 A. Test classroom settings with blackout shades and blinds closed to simulate nighttime usage.
1. GENERAL
 A. Related sections:
 i. 26 00 00 – General Electrical Requirements
 ii. 26 09 23 – Lighting Control Devices
 iii. 26 09 36 – Modular Dimming Controls
 iv. 26 51 00 – Interior Lighting
 v. 26 56 00 – Exterior Lighting
 B. Relay output shall be clearly posted for future reference.

2. PRODUCTS
 A. Acceptable manufactures are:
 i. Douglas Lighting Controls
 ii. Lithonia Lighting
 iii. Lutron

3. EXECUTION
 A. Training
 i. The Contractor shall include in the Cost of the Work or Bid sixteen hours of on-site training and sixteen hours of off-site technical support during the one-year warranty period. On-site training and off-site technical support requests will be initiated by and scheduled at the request of the Project Manager. Building occupant must be present at site during on-site training and off-site technical support sessions.
1. **GENERAL**
 A. Related sections:
 i. 26 00 00 – General Electrical Requirements
 B. Transformer 15 kVA and smaller are allowed to be wall or ceiling mounted.
 C. Transformers larger than 15 kVA shall be floor mounted. If space restrictions, larger transformers can ceiling hung or wall mounted only after providing documentation of evaluation by Georgia registered structural engineer.

2. **PRODUCTS**
 A. Building transformers for outlets and lighting shall be dry type with copper windings and voltage adjustment taps.
 B. Transformer efficiency shall meet the latest Department of Energy requirements.
1. GENERAL
 A. Related sections:
 i. 26 00 00 – General Electrical Requirements
 B. Switchgears and switchboards shall be provided for incoming services of 800 amperes or higher.

2. PRODUCTS
 A. Bus materials shall be copper or plated copper.
 B. Main overcurrent device shall be circuit breaker type. Fuse disconnects are NOT acceptable.
 C. Breakers rated 400 amperes or higher shall be insulated type with electronic tripping devices.
 D. Surge protective devices and metering package shall be standard for all switchgears and switchboards.
1. **GENERAL**
 A. Related sections:
 i. 26 00 00 – General Electrical Requirements
 B. All panel board circuit breakers shall be bolt on type.
 C. All interior panel board enclosures shall be equipped with “door-in-door” feature.
 D. All service entrance current limiting devices shall be circuit breakers. No fuse switches are allowed.
1. **GENERAL**
 A. Related sections:
 i. 26 00 00 – General Electrical Requirements
 B. Low voltage (600V and below) motor control centers (MCC) shall be provided for motor starters, feeder breakers for VFDs and other electrical equipment where practicable.

2. **PRODUCTS**
 A. The use of wall mounted starters shall be discouraged.
 B. All motor starters shall be cross the line combination type with motor circuit protectors and hand-off-automatic door switches with transformer type red run indicating lights.
 C. Control voltage shall be 120V.
 D. MCC bus materials shall be copper, tin-coated copper or silver plated copper.
 E. Minimum rating for vertical buses shall be 300 amperes.
1. GENERAL
 A. Related sections:
 i. 23 00 00 – Heating Ventilation and Air Conditioning
 ii. 26 00 00 – General Electrical Requirements

2. PRODUCTS
 A. Acceptable manufactures are:
 i. ABB ACH 500 with by-pass mounted on the side of the VSD
 ii. Danfoss-Approved equivalent to above
 iii. Yaskawa-Approved equivalent to above
 B. Fan replacement shall be "plug-in" replaceable with the drive running and shall not require removal of components and/or opening of the drive enclosure.
 C. Variable Speed Drive (VSD) shall have integral reactive filters.
 D. Conduits shall be metal, separate for power input, power to the motor and controls;
 E. VSD shall have a built-in 5% impedance reactor/filter, I/O's for communication shall be integral with the drive enclosure.
 F. VSD shall be capable of withstanding a 10,000 volt spike, 50 joules of power, and input voltage variations from 408v up to 528v without tripping.
 G. VSD shall be rated (de-rated) for the anticipated operating conditions;
 H. Enclosure shall be NEMA 12. Note NEMA 12 enclosure is larger than NEMA 1. If space is a premium coordinate with Project Manager to confirm, through variance process, if NEMA 1 will be accepted.
 I. Warranty, including parts and on-site labor, shall be 36 months from Material Completion.
 J. VSDs shall have a manual by-pass switch.
 K. VSDs shall be Bacnet compatible and firmware shall allow the device MAC address to be manually configured.
 L. All motors driven by VFDs with shaft grounding rings shall be grounded to their source ground with no more than 25 ohms in resistance measurement.
1. GENERAL
 A. Related sections:
 i. 26 00 00 – General Electrical Requirements

2. PRODUCTS
 A. The fuel source shall be natural gas. Diesel fuel is not allowed.
 B. The emergency power shall be fed through dedicated panel boards via automatic transfer switches equipped with by-pass switches.
1. **GENERAL**
 A. Related sections:
 i. 26 00 00 – General Electrical Requirements
 B. Design Professional shall provide code documentation of whether or not Facility Lighting Protection is required.
 C. For situations where it is not required, coordinate with Project Manager to confirm if shall be included in the Project.
 D. If system is required, as a minimum the system shall be installed per Lightning Society of America’s standard.
1. GENERAL
 A. Related sections:
 i. 09 50 00 – Ceilings
 ii. 26 00 00 – General Electrical Requirements
 iii. 26 09 23 – Lighting Control Devices
 iv. 26 09 36 – Modular Dimming Controls
 v. 26 09 43.16 – Addressable Fixture Lighting Control
 vi. 27 41 00 – General Audio-Visual Systems Requirements
 vii. 27 41 00.01 – Audio-Visual Control System
 B. Lighting level shall conform to IES Standards and applicable codes.
 C. Lighting plans shall be furnished to show all lighting fixture layouts including emergency lights with circuits, switches, wire and conduit sizes indicated. Lighting plans showing only lighting fixture layout are not acceptable. Lighting panelboards schedules and lighting fixture schedules shall be furnished.
 D. During the design phases provide cutsheet for basis of design of each proposed fixture to Project Manager for review and approval.
 E. Provide photometric analysis in footcandles for each space.
 F. Provide watts per square foot calculations for each space.
 G. Provide list to Project Manager of types of lamps selected for project. For maintenance purposes minimize the number of types of lamps.
 H. Locate fixtures so that maintenance of fixtures is not difficult and does not require a ladder over 20’ tall or lift.
 i. Light fixtures for stairwells shall not be placed so that access to the fixture must be from the stairs.
 ii. Design Professional is required to submit documentation to the Project Manager and receive location approval of any light fixtures that will require a ladder over 20’ tall or a lift to access fixtures.
 I. For occupancy based light sensors, the Design Professional shall review length of time setting requirements for deactivation of lights with the Project Manager.

2. PRODUCTS
 A. Linear fluorescent tubes shall be either T5 or T8; however, mixture of these types of lamps in one facility is not allowed.
 B. Offices, laboratories, and classrooms are typically furnished with 2 by 4 recessed fixtures. These fixtures shall receive 3 fluorescent lamps, T5 or T8.
 C. All offices and laboratories shall have dimming systems and/or zoning switching, and/or inboard and outboard switching.
 D. All classrooms shall have dimmable fluorescents or dimmable LEDs with low voltage or addressable controls. For classroom lighting presets, refer to section 26 09 36 Modular Dimming Controls and 27 41 00.01 – Audio-Visual Control Systems. Strategic zone switching (especially in smaller classrooms) may be approved through the variance process. Lighting systems shall operate independently from audio-video presentation systems, even when integrated together.
 E. All interior lamps shall have a color temperature of approximately 3000K.
 F. MR16 halogen lamps and are not allowed.
G. Incandescent lighting is not allowed.
H. LED fixtures: 26 56 00 Exterior Lighting, the section entitled ‘LED Fixtures’ applies to interior LED fixtures.

3. EXECUTION
 A. LED warranties: 26 56 00 Exterior Lighting, the section entitled ‘Warranty of LED Fixtures’ applies to interior LED fixtures.
1. GENERAL
 A. Related sections:
 i. 26 56 13 – Lighting Poles and Standards
 ii. 26 56 16 – Parking Lighting
 iii. 26 56 19 – Roadway Lighting
 iv. 26 56 29 – Site & Building Entry Lighting
 v. 26 56 33 – Walkway Lighting
 vi. 26 56 36 – Flood Lighting

 B. Purpose
 i. The Exterior Lighting goal is to provide strategies, which will ensure a consistently well-lit, safe and attractive campus. In addition, implementing these standardized specifications and practices will reduce light pollution and energy consumption campus-wide.

 ii. This lighting Standard minimizes the problems created by improperly designed and installed outdoor lighting. It reduces problems with glare, sky glow, light trespass, and capitalizes on the reduction of energy and financial costs of outdoor architectural and landscape lighting.

 iii. Excessive glare can be troublesome and may cause safety problems. Light trespass reduces privacy, and higher energy use results in increased costs besides impacting the environment directly and indirectly. There is a need for a lighting Standard that recognizes the benefits of outdoor lighting and provides clear performance-based guidelines for its installation on UGA campuses. Appropriately regulated and installed outdoor lighting will contribute to the safety and welfare of the UGA community and greater Athens area.

 C. General Campus Requirements
 i. Quality exterior lighting is achieved by providing light where it is most needed without creating glare. In this fashion, smaller lamp wattages can be used to achieve a desirable effect. Energy consumption, maintenance and capital equipment costs can be reduced without sacrificing visibility or aesthetics.

 ii. Technical design criteria includes basic requirements such as lighting levels (illuminance), uniformity of light and balance of brightness (luminance) in addition to comments on trespass, night sky pollution and glare control. The technical design criteria, including but not limited to luminance levels, shall not be exceeded without an approved written variance issued by the (Office of University Architects for Facilities Planning) OUA Project Manager. If the Design Professional’s design does not meet the criteria in this document, the Design Professional may incur charges (as a design error) to modify the installation to meet the requirements.

 iii. Design Professionals shall provide support documentation including photometric calculations, manufacturer’s datasheets and lamp schedules. The Office of University Architects for Facilities Planning recommends that Design Professionals be Lighting Certified by the National Council for Qualification of Lighting Professionals (NCQLP). The NCQLP has established the LC certification
process, by which practitioners in lighting and related fields, through testing, demonstrate their knowledge and experience across the lighting professions.

iv. Fixture Selection: All outdoor light fixtures installed on UGA campuses shall be either selected from the product group specified in this Standard, or submitted as alternates with all supporting data to be approved by the OUA Project Manager. Alternates proposed will however have to exhibit construction, optical characteristics and lamping of comparable quality as a prerequisite for consideration.

v. All exterior lighting fixtures shall be shown wired and circulated on either exterior lighting plans or as a part of electrical site plans. Lighting calculations shall be furnished to FMD for future references.

vi. Direct burial cables are not allowed. All underground wiring shall be in PVC schedule 40 conduits.

vii. All exterior lighting fixtures shall be controlled by individual photocells. Time clock and/or group photo controls (with or without lighting contactors) are permitted under special situations.

viii. All exterior lighting circuits shall be fed from lighting panels of the associated building. Tapping power from the building service transformer secondaries are NOT permitted.

ix. Exceptions
 a. Exceptions to this Standard include sports lighting, temporary lighting, lighting integral to historic structures, and emergency lighting.
 b. Any exceptions to this standard shall be reviewed by the Office of University Architects for Facilities Planning on a case-by-case basis.

x. Prohibitions
 a. Laser Source Light: The use of laser source light or any similar high intensity light projected above the horizontal shall not be permitted.
 b. Searchlights: The operation of searchlights shall not be permitted.
 c. Lamps: Low Pressure Sodium and High-pressure Mercury Vapor Lamps in new installations shall not be permitted.
 d. Uplighting of new building facades and new landscaping is not permitted.

D. Design Guidelines
 i. Minimize light trespass and glare.
 a. Light fixtures should be designed so that the light goes exactly where it is intended. Special care should be taken to include louvers, glare shields, or barn doors to the front of floodlight fixtures to prevent light pollution and direct glare. Extra light bouncing into the atmosphere interferes with the work of astronomers and can disrupt the neighboring buildings. Wherever possible, use cut-off or full-cutoff fixtures, as defined by the Illuminating Engineering Society of North America (IESNA).
 ii. Avoid overly bright lighting.
 a. The intent of lighting building entries and circulation areas is to enhance the best qualities of that building, not to become a "beacon" on campus. The brightest is not necessarily the best. Maintain a maximum average illuminance level of 1-3 foot-candles on all horizontal surfaces,
in accordance with the Ninth Edition of the IES Handbook, depending on application.

iii. Use “white” light sources.
 a. White light sources are recommended for campus lighting. The most commonly available sources are metal halide and fluorescent. There have been numerous studies in the past decade, which analyze the effect of light source color in relationship to nighttime vision. Evidence has shown that white light is the most effective source in ambient luminance levels below 3cd/m². This luminance level applies to all exterior lighting on the UGA campuses. Early indications show that white light sources such as metal halide will be more efficient than high-pressure sodium when visibility factors are considered. White light is more effective because of nighttime vision sensitivity, which is a combination of two components: cones (focus & day vision) and rods (peripheral and night vision). Our peripheral vision functions poorly when blue/green light is not present in the light source. As white light has all colors present in the spectrum, both rods and cones perform better under this light source. Peripheral vision is enhanced, allowing for faster reaction time, which potentially increases safety.
 b. In the white light category, LED lighting is swiftly growing as a viable technology. Use of LED fixtures on the campuses must comply with minimum performance and warranty criteria in this document.

iv. Avoid “yellow” light sources
 a. High-pressure sodium has often been selected because of its high efficiency and longevity; however, High Pressure Sodium (HPS) lamps produce an orange-colored light and the color-rendering index (CRI) does not provide a lighting quality, which is appropriate for the campus.
 b. HPS lamps are the primary street lighting source used by many cities including the City of Athens and there may be instances on adjoining streets adjacent to campus boundaries where the use of HPS lamps is necessary. This allows the campus to maintain or improve visual consistency with the City standards. If HPS lamps are to be used for a specific project, written authorization from the Office of University Architects must be obtained prior to the installation of the fixtures.
 c. The use of Low Pressure Sodium (LPS) or Mercury Vapor (MV) light sources shall not be allowed without prior approval due to the poor color rendering values and visibility issues, as well as poor energy efficiency (in case of MV).

v. Design with maintenance in mind.
 a. Mount light fixtures in accessible locations so that the lighting can be maintained regularly. Specify fixtures that have simple mechanisms for lamp changing and captive hardware, where parts will not fall out of the fixture and disappear. Use long-life lamps wherever possible and avoid the use of incandescent light sources without written approval of the OUA Project Manager. Specify tamper-resistant and captive screws in any area that may be accessible to the public.

vi. Connect lighting to a control system.
a. Due to the difference between summer and winter daylight hours, lighting should be connected to a photocell to turn fixtures on and a time clock to turn them off. The use of a dimming system or building automation system is not required, but encouraged where appropriate.

vii. Design with efficiency in mind.
 a. Use the smallest wattage lamp source available in any given application to meet the desired light levels specified in section D5 to minimize energy consumption. Do not, however, compromise desired light levels as outlined in D5 to achieve higher efficiency.

viii. Design with lamp color in mind.
 a. Specify lamps with a high color rendering index (CRI) and a uniform color temperature. The UGA campus standard correlated color temperature (CCT) is 4000K. A color rendering index (CRI) value of 70 or greater is the minimum recommendation for light sources on campus. Any LED products used in exteriors will adhere to these standards – refer to appendices regarding LED fixtures and standards.

ix. Design with safety in mind.
 a. It is important to understand the role of lighting in safety and security in an exterior environment. A well-designed and commissioned lighting system will help with detection and assessment of any threat by recognizing facial expression and body language of oncoming people, and could facilitate a timely defensive or evasive action.

b. Those who would perpetrate a misdeed are hampered by the concerns of being seen, intentions recognized and actions observed and reported. Beyond this however safety and security depends on the actual infrastructure on campus to deal with crime.

c. Factors other than horizontal illuminance should be taken into consideration when considering lighting design for safety. Vertical illuminance, glare, color of light, uniformity and heat are equally important in lighting design.
 1) Vertical illumination is essential for the visual identification of individuals and bicyclists. Visual identification is dependent to a great degree on vertical surface illuminance. It is also
dependent on the uniformity of this vertical illuminance. Vertical illumination is key to threat assessment because it allows detection of facial expression and body language.

2) Our nighttime visibility is sensitive to contrast. Excessively dark areas immediately adjacent to brighter task area can limit visibility and allow for concealment places for miscreants. Similarly, high exterior lighting levels in the absence of uniformity will actually hinder rather than aid in safety. Therefore it is imperative to maintain reasonable maximum to minimum horizontal and vertical illuminance ratios to heighten nighttime visibility. The ratios of average-to-minimum and maximum-to-minimum illuminance and luminance values should be as per IESNA 9th Edition Handbook recommended standards.

3) Fixtures should be placed such that they cannot readily be touched by individuals. Most fixtures produce an excessive amount of heat, besides being electric devices, which can cause burns on the human skin.

4) Too much light, both horizontal and vertical, or excessive brightness emanating from improperly mounted and aimed fixtures can cause glare, which can distract or disable an individual. The glare causes a veiling effect on the surroundings and masks all details. Such conditions leave the individual more susceptible to crime or accidents.

5) At locations with CCTV cameras, special attention must be paid to the illumination levels and distribution because a camera perceives its surrounding very differently from the human visual system. The CCTV manufacture and security consultant must be consulted for vertical and horizontal illuminance requirements as well as uniformity requirements for the system. There might also be a requirement of using fixtures with specific optical characteristics. The lighting should be specified and designed to adhere to these requirements.

d. Compliance with the IES guidelines and the light levels prescribed in this document will ensure adequate illumination for security and safety.

E. Required Light Levels
i. Pedestrian Walkways
 a. See sections 26 56 33 - Walkway Lighting and section 26 56 13 - Lighting Poles and Standards.

ii. Bikeways, and Roadways
 a. See sections 26 56 19 - Roadway Lighting and 26 56 13 - Lighting Poles and Standards.

iii. Surface Parking and Parking Garages
 a. See section 26 56 16 – Parking Lighting.

iv. Site and Building Entry Lighting
 a. See section 26 56 29 – Site and Building Entry Lighting.

v. Signage
 a. Signage lighting, when used, should comply with the following requirements:
 b. Fixtures illuminating signage shall have precision optics so as not to throw light beyond the sign. Specify appropriate shielding accessories for the fixtures
 c. Whenever possible, signage should be illuminated from above using shielded fixtures to restrict and avoid night sky light pollution.
 d. Lamping shall be metal halide lamps, LED or fluorescent light sources of 4000K CCT, and 80+ CRI.
 e. Illuminance values measured vertically on the signage surface should not exceed 20fc average maintained, with a maximum-to-minimum ratio of 4:1. For special applications that might require higher illuminance levels, the Office of University Architects for Facilities Planning shall be informed.
 f. Fixtures used for signage applications should have lockable aiming, easy maintainability and wherever possible, integral transformers instead of remote (except in case of LEDs).

vi. Demonstration Of Compliance
 a. Point-by-point photometric plans (in foot-candles) of these applications, using software such as AGI32 or Visual, shall be provided for University review upon request. The calculations shall consider all light loss factors – lamp lumen depreciation, luminaire dirt depreciation and ballast factors. In case of fluorescent lamping, light losses expected due to cold weather shall be accounted for in the design/specification of the system. Justification for deviating from the standards shall be submitted to the Project Manager during the design development phase.

F. LED Fixtures
 i. Introduction
 a. Life of LED lighting is not yet well understood given the relative newness of the technology for this application. Projected life of LED sources and luminaires is a key component to payback scenarios in the University’s purchase evaluations; therefore life claims provided by suppliers, typically 70% lumen maintenance at 50,000 hours or greater, needs to be verified.
b. Along with this issue, LED luminaires and retrofit lamps are being produced by many companies with varied experience in the lighting industry. In order to ensure that any product reviewed for application on the UGA campuses meet a standard performance benchmark, the following requirements will have to be met by the manufacturer.

c. Unless there is a very good reason for not adhering to these benchmarks, the product will not be considered suitable for the University.

ii. Materials and Fabrication

a. Manufacturer of LED systems shall utilize an advanced production LED binning process to maintain color consistency. All LED individual fixture types must be shipped at the same time and stored on-site to ensure that products have been produced from the same bin. Tolerances greater the 200K will not be acceptable.

b. For exterior application, all white LED’s shall have a color temperature of 70 and above.

c. The LED fixtures shall be operated at constant and carefully regulated current levels. LEDs shall not be overdriven beyond their specified nominal voltage and current.

d. High power LED fixtures shall be thermally protected using one or more of the following thermal management techniques: metal core board, gap pad, heat sinks and/or internal monitoring firmware. Junction temperature of LED shall not exceed LED chip manufacturer’s recommendation.

e. LED fixture housings shall be designed to transfer heat from the LED board to the outside environment.

f. Where applicable, for wet location use, LED-based fixture itself shall be sealed, rated, and tested for appropriate environmental conditions, not accomplished by using an additional housing or enclosure.

g. Fixtures used on the exterior building facades shall have a minimum IP65 rating. All LED fixtures and power/data supplies shall be provided by a single manufacturer to ensure compatibility.

h. All LED fixtures (100% of each lot) shall undergo a minimum eight-hour burn-in test during manufacturing.

i. All LEDs used in the LED fixture shall be high brightness and proven quality from established and reputable LED manufacturers in business for greater than 5 years.

j. LED fixtures shall be UL/ETL Listed.

k. Manufacturer shall be able to provide supporting documentation of the product meeting third party regulatory compliance. At the minimum, LM79 and LM80 test results shall be made available.

l. Manufacturer shall provide optical performance, polar diagrams, and relevant luminance and illuminance photometric data based on test results from an independent testing lab.

m. White LED sources must meet the following requirements:

1) Luminaires must be rated for -40°C to +50°C operation

2) D_w tolerance of 0.001 ± 0.006
3) Color Rendering Index (CRI): ≥ 80
4) Luminaire manufacturer must submit reliability reports indicating that the manufacturer of the LED (chip, diode, or package) has performed JEDEC (Joint Electron Devices Engineering Council) reliability tests on the LEDs as follows:
 i) High Temperature Operating Life (HTOL)
 ii) Room Temperature Operating Life (RTOL)
 iii) Low Temperature Operating Life (LTOL)
 iv) Powered Temperature Cycle (PTMCL)
 v) Non-Operating Thermal Shock (TMSK)
 vi) Mechanical shock
 vii) Variable vibration frequency
 viii) Solder Heat Resistance (SHR)

iii. Warranty of Led Fixtures: The UGA will seek written assurances from the manufacturer that the product will perform as claimed in terms of life.
 a. Provide a written five year on-site replacement material, fixture finish, and workmanship. On-site replacement includes transportation, removal, and installation of new products. Finish warranty must include warranty against failure or substantial deterioration such as blistering, cracking, peeling, chalking, or fading.
 b. Provide a written five year replacement material warranty for defective or non-starting LED source assemblies.
 c. Provide a written five-year replacement material warranty on all power supply units (PSUs).
 d. Provide a written five year replacement warranty for luminaires producing inadequately-maintained illuminance levels at end of warranty period, as prorated from levels expected at end of useful life. For example, a luminaire expected to produce 70% of initial lumens at 100,000 hours would be expected to last over 11 years (continuous operation), so levels would be expected to be at 87% of initial at end of five-year warranty period. Warranty must cover all light sources (LED package, LED array, or LED module) including, but not limited to the LED die, encapsulate, and phosphor. If the expected useful life of the luminaire system is not maintained, the manufacturer must replace the light source(s) or luminaire as needed at no cost to the University.
 e. Owner may request an optional ten year replacement warranty for inadequately-maintained illuminance levels, finish of luminaire, power-supply unit (PSU), or defective LED source assemblies. The terms of the extended warranty will be negotiated by the Owner and the luminaire manufacturer for an additional cost.

iv. Questionnaire To Verify Led Fixture Quality: Provided below is a short list of questions that Campus personnel in charge of shortlisting and purchasing fixtures should ask any LED fixture manufacturer as a means to promote the use of quality products. The market is flooded with LED products manufactured by companies very new to the field of lighting – such products usually look good at the first glance, but are not designed to last.
a. Is the product UL/ETL listed as a whole assembly, or is it an assembly of independently UL/ETL listed products? (If the product is one of the latter, do not use them).

b. Which chip manufacturer does the fixture manufacturer purchase the LEDs from? Is there paperwork available to support the claim? (Philips, Osram, GE, Nichia, Cree, Hitachi and Xicato produce the best LEDs for architectural applications. Any other manufacturers should be researched before approving. If the answer is that it keeps changing, there might be color variations between their fixtures.)

c. Could you provide us the LM80 test results from the LED chip manufacturer? (This is a standard test for LED life, lumen output, color consistency, electrical and thermal properties over minimum 6000 hrs of test time, conducted by the chip manufacturer using bare LED chips. If fixture manufacturer says no or is not sure, that is a red flag.)

d. Could you provide us with LM79 test results for the fixture? (This is a standard test for total lumen output, electrical characteristics, efficacy and color characteristics, conducted by the manufacturer of the fixture with LEDs installed in it. If fixture manufacturer says no or is not sure, that is a red flag.)

e. Does the fixture manufacturer list the maintenance of minimum 70% of initial lumens at 50,000 hrs, at full current and ambient temperature of the room/application that the fixture is designed for? (This is sometimes referred to as L70, and is an industry standard requirement. Anybody who claims longer life such as 70,000hrs or 100,000 hrs is using modified temperature or current to make LEDs last longer, at the cost of total light output).

f. What is the binning size of the LED chips? (A bin indicates the amount of consistency and variation in color of the white LEDs. Recommended bin sizes are ±25K for premium interior spaces, ±75K for standard interior spaces and outdoor signage lighting, ±150K for outdoor area lighting. Ignorance of this issue or not sure about bin sizes are red flag responses).

g. What is the available correlated color temperatures (CCT) range for the fixtures? (3000K through 5000K should be available. We recommend against 6000K LED usage – the color is too blue).

h. What is the color rendering index of the LEDs used? (Minimum 70 for outdoors and 82 for indoors).

i. What is the warranty on fixture, LEDs and LED driver? (Minimum 5 years – refer to the section on LED warranty).
G. Definitions

Cutoff
A luminaire light distribution where the candela per 1000 lamp lumens does not numerically exceed 25cd (2.5 percent) at an angle of 90 degrees above nadir, and 100cd (10 percent) at a vertical angle of 80 degrees above nadir.

Fixture
The assembly that houses the lamp or lamps and can include all or some of the following parts: a housing, a mounting bracket or pole socket, a lamp holder, a ballast, a reflector or mirror, and/or a refractor or lens.

Flood Light/Spot Light
Any light fixture or lamp that incorporates a reflector or a refractor to concentrate the light output into a directed beam in a particular direction.

Full Cutoff
A luminaire light distribution where zero candela intensity occurs at an angle of 90 degrees above nadir, and at all greater angles from nadir. Additionally, the candela per 1000 lamp lumens does not numerically exceed 100cd (10 percent) at a vertical angle of 80 degrees above nadir.

Fully Shielded Fixture
A lighting fixture constructed in such a manner that all light emitted by the fixture, either directly from the lamp or a diffusing element, or indirectly by reflection or refraction from any part of the luminaire, is projected below the horizontal as determined by photometric test or certified by the manufacturer. Any structural part of the light fixture providing this shielding must be permanently affixed.

Glare
Light emitting from a luminaire with an intensity great enough to reduce a viewer’s ability to see, and in extreme cases causing momentary blindness.

High Pressure Sodium
A common lamp used to produce high intensity narrow spectrum light, typically described as “amber” or “yellow”. One of the most efficient light producers.

IES
Illuminating and Engineering Society. The lighting industry’s recognized technical authority on illumination.

Lamp
The component of a luminaire that produces the light (the bulb).

Light Trespass
The shining of light produced by a luminaire beyond the boundaries of the property on which it is located.

Lumen
A unit of luminous flux. One footcandle is one lumen per square foot. For the purposes of this standard, the lumen-output values shall be the INITIAL lumen output ratings of a lamp.

Luminaire
A complete lighting system, and includes a lamp or lamps and a fixture.

Metal Halide
A common lamp used to produce high intensity broad spectrum light, typically described as “white”.

Metal Halide
Refractor
The clear or translucent “lens” containing the lamp. It can be made of glass or other polycarbonate compounds, and have a range of textures. Prismatic refractors are the most common, as they direct light in a more uniform, controlled manner.

Semi Cutoff
A luminaire light distribution where the candela per 1000 lamp lumens does not numerically exceed 50cd (5 percent) at an angle of 90 degrees above nadir, and 200cd (20 percent) at a vertical angle of 80 degrees above nadir.
2. PRODUCTS

A. For Pedestrian Walkways, Bikeways, and Roadways – E1
 See Section 26 56 13 – Lighting Poles and Standards for Specifications.
 E1.a. Fixture for Replacement of Existing Campus Fixtures on Poles (Metal Halide and Semi-Cutoff Classification)
 E1.b. Fixture for New Construction Campus Fixtures on Poles (Metal Halide and Cutoff classification)
 E1.c. Fixture for New Construction Campus Fixtures on Poles (LED and Cutoff Classification)
 E1.d. Pole for E1.a., E1.b., and E1.c.

B. For Building Entries – E2
 See Section 26 56 29 – Site and Building Entry for Specifications.
 E2.a. RAB Lighting LED Wallpacks – LED

C. For Parking Surfaces – E3
 See Section 26 56 16 – Parking Lighting for Specifications.
 E3.a. Parking Surface Fixture – MH
 E3.b. Parking Surface Fixture – LED

D. For Parking Garages – E4
 See Section 26 56 16 – Parking Lighting for Specifications.
 E4.a. Globe Shaped – MH
 E4.b. Linear Fixture – CFL
 E4.c. LED Retrofit For Fixture E4.b.
 E4.d. Various Shapes Integral LED
 E4.e. Linear Integral LED
1. **GENERAL**
 A. Related sections and design criteria:
 i. 26 56 00 – Exterior Lighting
 ii. 26 56 16 – Parking Lighting
 iii. 26 56 19 – Roadway Lighting
 iv. 26 56 29 – Site and Building Entry Lighting
 v. 26 56 33 – Walkway Lighting

2. **PRODUCTS**
 A. For Pedestrian Walkways, Bikeways, and Roadways – Series E1
 B. See following product cutsheets for additional specification information on Series E1:
 E1.a. Fixture for Replacement of Existing Campus Fixtures on Poles (Metal Halide and Semi-Cutoff Classification)
 E1.b. Fixture for New Construction Campus Fixtures on Poles (Metal Halide and Cutoff Classification)
 E1.c. Fixture for New Construction Campus Fixtures on Poles (LED and Cutoff Classification)
 E1.d. Pole for E1.a., E1.b., and E1.c.
E1.a.

FOR PEDESTRIAN WALKWAYS, BIKEWAYS, AND ROADWAYS
FIXTURE FOR REPLACEMENT OF EXISTING CAMPUS FIXTURES ON POLES
(Metal Halide And Semi-Cutoff Classification)

A. Note
i. The UGA has sole source approval for this product. No substitutions will be accepted.

B. Specification
i. LUMEC L80 series street lighting fixture with RACE refractor optics, IESNA type 3 distribution, IESNA Semi-cutoff Classification, 150W pulse start metal halide lamping and S-series ballast, with SF80 mounting and black powdercoat finish.

• HID Lamps (High Intensity Discharge)

<table>
<thead>
<tr>
<th>Voltage</th>
<th>RACE</th>
<th>RR</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 MH, metal</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>70 MH, metal</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>100 MH, medium</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>R60 MH, medium</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>95 MH, mogul</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>200 MH, mogul</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>250 MH, mogul</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>350 MH, mogul</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>500 MH, mogul</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>700 MH, mogul</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>1000 MH, mogul</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>150 HPS, mogul</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>200 HPS, mogul</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>250 HPS, mogul</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

✓ Available RR: Remote ballast

• Optical systems (Lamps not included)

<table>
<thead>
<tr>
<th>SE Optics</th>
<th>RACE Optics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raced arc-form cut-off reflector</td>
<td>Raced arc-form cut-off reflector with segmented optic assembly dome</td>
</tr>
</tbody>
</table>

• Voltages

| 120 / 208 / 240 / 277 / 320 / 480 |

NOTE: REMOVE BALL FINIAL AT TOP OF FIXTURE
MATCH STYLE OF THIS HOUSING

* Photometry available on Lumen web site www.lumen.com

LIGHTING POLES & STANDARDS
DRAFT MAY 17, 2013
26 56 13-2
L82-RACE-SF80

- **Adaptors**
 - SF80
 - SF9
 - SF5
 - SF70
 - SF72
 - SF73

- **Luminaire options**
 - FN: Decorative finial (see box below)
 - HS: House shield (with SE only)

- **Mountings**
 - Consult the Pole Guide for details and the complete line of mountings

- **Finishes**
 - The specially formulated Luminal powder coat finish is available in a range of many standard colors. (Consult Luminaire Color Chart for complete specifications)

- **Configurations**
 - 1A, 2, 2A, 3A, 3B, 4, 4A, 5, M

- **Ordering sample**

<table>
<thead>
<tr>
<th>Luminaire</th>
<th>Lamp</th>
<th>Optical System</th>
<th>Voltage</th>
<th>Adaptor</th>
<th>Options</th>
<th>Mounting & configuration</th>
<th>Pole</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>L80-PCCS</td>
<td>150 HPS</td>
<td>SE3</td>
<td>120</td>
<td>SF72</td>
<td>HS</td>
<td>SF80-CRA1A</td>
<td>APR4-12</td>
<td>BKTX</td>
</tr>
</tbody>
</table>

- **NOTE:** REMOVE BALL FINIAL AT TOP OF FIXTURE
E1.a.
SAMPLE PHOTOMETRICS SPACING OF 90 FEET – FOR PEDESTRIAN WALKWAYS, BIKEWAYS, AND ROADWAYS

FIXTURE FOR REPLACEMENT OF EXISTING CAMPUS POLES ONLY

A. Optical System
 i. Race Type III
B. IES Classification
 i. Non-Cutoff
C. On Center Spacing
 i. 90 Feet
D. Roadway Surface Horizontal Illuminances (foot-candles)
 i. Average: 0.68
 ii. Minimum: 0.30
 iii. Average/Minimum: 2.27
 iv. Maximum/Minimum: 5.00
E. Vertical Along Road Illuminances (foot-candles)
 i. Average: 0.60
 ii. Minimum: 0.10
 iii. Average/Minimum: 6.00
 iv. Maximum/Minimum: 16.00
F. Vertical Across Sidewalk Illuminances (foot-candles)
 i. Average: 0.75
 ii. Minimum: 0.60
 iii. Average/Minimum: 1.25
 iv. Maximum/Minimum: 1.33
G. Vertical Along Sidewalk Illuminances (foot-candles)
 i. Average: 1.63
 ii. Minimum: 0.80
 iii. Average/Minimum: 1.29
 iv. Maximum/Minimum: 1.63
H. Near Sidewalk Surface Horizontal Illuminances (foot-candles)
 i. Average: 0.76
 ii. Minimum: 0.20
 iii. Average/Minimum: 3.80
 iv. Maximum/Minimum: 7.50
I. Far Sidewalk Surface Horizontal Illuminances (foot-candles)
 i. Average: 0.27
 ii. Minimum: 0.20
 iii. Average/Minimum: 1.35
 iv. Maximum/Minimum: 2.00
E1.a.
SAMPLE PHOTOMETRICS SPACING OF 110 FEET – FOR PEDESTRIAN WALKWAYS AND BIKEWAYS
FIXTURE FOR REPLACEMENT OF EXISTING CAMPUS POLES ONLY

A. Optical System
 i. Race Type III

B. IES Classification
 i. Non-Cutoff

C. On Center Spacing
 i. 110 Feet

D. Vertical Along Sidewalk Illuminances
 (foot-candles)
 i. Average: 0.75
 ii. Minimum: 0.60
 iii. Average/Minimum: 1.25
 iv. Maximum/Minimum: 1.50

E. Sidewalk Surface Horizontal Illuminances
 (foot-candles)
 i. Average: 0.87
 ii. Minimum: 0.40
 iii. Average/Minimum: 2.18
 iv. Maximum/Minimum: 4.50
E1.a.

SAMPLE PHOTOMETRICS SPACING OF 110 FEET – FOR ROADWAY LIGHTING FIXTURE FOR REPLACEMENT OF EXISTING CAMPUS POLES ONLY

A. Optical System
 i. Race Type III

B. IES Classification
 i. Non-Cutoff

C. On Center Spacing
 i. 110 Feet

D. Calculation Summary Showing Maintained Illuminances (foot-candles)
 i. Average Horizontal: 0.58
 ii. Maximum Horizontal: 1.50
 iii. Minimum Horizontal: 0.30
 iv. Average/Minimum: 1.93
 v. Maximum/Minimum: 5.00
 vi. File: LU200037.IES

E. Light Loss Factors (foot-candles)
 i. Ballast Factor: 0.72
 ii. Lamp Lumen Depreciation: 0.72
 iii. Luminaire Dirt: 0.72
 iv. Depreciation
E1.b.
FOR PEDESTRIAN WALKWAYS, BIKEWAYS, AND ROADWAYS
FIXTURE FOR NEW CONSTRUCTION CAMPUS FIXTURES ON POLES
(Metal Halide And Cutoff Classification)

A. Note
i. The UGA has sole source approval for this product. No substitutions will be accepted.

B. Specification
i. LUMEC L80 series street lighting fixture with SE reflector optics, IESNA type 3 distribution, IESNA Cutoff Classification, 150W pulse start metal halide lamping and S-series ballast, with SF80 mounting and black powdercoat finish.

HiD Lamps

<table>
<thead>
<tr>
<th>Wattage</th>
<th>RACE</th>
<th>RR</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-HAL</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>70-HAL</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>100-HAL</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>150-HAL</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>200-HAL</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>310-HAL</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Optical systems

- **RR Optics**
 Round borosilicate refractor

- **SE Optics**
 Hydro-formed cut-off reflector system set in flanged acceptance duplicating patterns

- **RACE Optics**
 Round acrylic, 600miler binocular, 750W and round reflector with segmented gasket access dome

Voltages

- 120 / 208 / 240 / 377 / 384 / 480
- multi-phase balast site available

Photometry available on Lumeq web site www.lumeq.com
NOTE: REMOVE BALL FINIAL AT TOP OF FIXTURE

> **Adaptors**

SF80 SF70 SF5 SF70 SF72 SF73

> **Luminaire options**

FN Decorative finial (see box below)
HS House shield (with 3E only)

FINIALS
FN1 FN2 FN3 FN4 FN6 FN8

> **Mountings**

(Consult the Pole Guide for details and the complete line of mountings)

CRA CRC CRD CRE CRF

> **Poles and Pole options**

(Consult the Pole Guide for details and the complete line of poles)

> **Finishes**

The specially formulated Lumital powder coat finish is available in a range of many standard colors. (Consult Lumite’s Color Chart for complete specifications)

> **Configurations**

> **Ordering sample**

<table>
<thead>
<tr>
<th>Luminaire</th>
<th>Lamp</th>
<th>Optical System</th>
<th>Voltage</th>
<th>Adaptor</th>
<th>Options</th>
<th>Mounting & configuration</th>
<th>Pole</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>L80-PCCS</td>
<td>150 HPS</td>
<td>SE3</td>
<td>120</td>
<td>SF72</td>
<td>HS</td>
<td>SF80-CRA1A</td>
<td>APR4-12</td>
<td>BKTX</td>
</tr>
</tbody>
</table>
E1.b.
SAMPLE PHOTOMETRICS SPACING OF 55 FEET – FOR PEDESTRIAN WALKWAYS, BIKEWAYS, AND ROADWAYS
FIXTURE FOR NEW CONSTRUCTION AREAS

A. Optical System
 i. SE Type III

B. IES Classification
 i. Cutoff

C. On Center Spacing
 i. 55 Feet

D. Roadway Surface Horizontal Illuminances (foot-candles)
 i. Average: 1.06
 ii. Minimum: 0.30
 iii. Average/Minimum: 2.65
 iv. Maximum/Minimum: 4.00

E. Vertical Along Road Illuminances (foot-candles)
 i. Average: 0.79
 ii. Minimum: 0.20
 iii. Average/Minimum: 3.95
 iv. Maximum/Minimum: 6.50

F. Vertical Across Sidewalk Illuminances (foot-candles)
 i. Average: 0.69
 ii. Minimum: 0.60
 iii. Average/Minimum: 1.15
 iv. Maximum/Minimum: 1.33

G. Vertical Along Sidewalk Illuminances (foot-candles)
 i. Average: 0.96
 ii. Minimum: 0.70
 iii. Average/Minimum: 1.37
 iv. Maximum/Minimum: 1.86

H. Near Sidewalk Surface Horizontal Illuminances (foot-candles)
 i. Average: 1.33
 ii. Minimum: 0.40
 iii. Average/Minimum: 3.33
 iv. Maximum/Minimum: 4.25

I. Far Sidewalk Surface Horizontal Illuminances (foot-candles)
 i. Average: 0.50
 ii. Minimum: 0.20
 iii. Average/Minimum: 2.50
 iv. Maximum/Minimum: 3.50
E1.b.
SAMPLE PHOTOMETRICS SPACING OF 72 FEET – FOR PEDESTRIAN WALKWAYS AND BIKEWAYS
FIXTURE FOR ALL NEW CONSTRUCTION AREAS

A. Optical System
 i. SE Type III
B. IES Classification
 i. Cutoff
C. On Center Spacing
 i. 72 Feet
D. Vertical Along Sidewalk Illuminances (footcandles)
 i. Average: 0.50
 ii. Minimum: 0.50
 iii. Average/Minimum: 1.00
 iv. Maximum/Minimum: 1.00
E. Sidewalk Surface Horizontal Illuminances (foot-candles)
 i. Average: 1.09
 ii. Minimum: 0.50
 iii. Average/Minimum: 2.18
 iv. Maximum/Minimum: 3.00
E1.b.
SAMPLE PHOTOMETRICS SPACING OF 100 FEET – FOR ROADWAY LIGHTING
FIXTURE FOR ALL NEW CONSTRUCTION AREAS

A. Optical System
 i. SE Type III

B. IES Classification
 i. Cutoff

C. On Center Spacing
 i. 100 Feet

D. Calculation Summary Showing Maintained Illuminances (footcandles)
 i. Average Horizontal: 0.69
 ii. Maximum Horizontal: 1.50
 iii. Minimum Horizontal: 0.20
 iv. Average/Minimum: 3.45
 v. Maximum/Minimum: 7.50
 vi. File: LU200035.IES

E. Light Loss Factors
 i. Ballast Factor: 0.72
 ii. Lamp Lumen Depreciation: 0.72
 iii. Luminaire Dirt: 0.72
 iv. Depreciation
E1.c.
FOR PEDESTRIAN WALKWAYS, BIKEWAYS, AND ROADWAYS
FIXTURE FOR NEW CONSTRUCTION CAMPUS FIXTURES ON POLES
(LED and Cutoff Classification)

A. Note
 i. The UGA has sole source approval for this product. No substitutions will be accepted.

B. Specification
 i. LUMEC L80 series street lighting fixture with LE3S reflector optics, IESNA type 3 distribution, IESNA Cutoff Classification, 90W LED lamping and electronic driver, with SF80 mounting and black powdercoat finish.

<table>
<thead>
<tr>
<th>Qty</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Luminaire L80-90W49-LED4K-PC-CS-LE3-120/277-SF80-HE-RBT-TN3-BK-LMS52450A</td>
<td></td>
</tr>
</tbody>
</table>

Description of Components:

Hood: A die cast A360.1 aluminum dome, mechanically assembled on the luminaire.
Guard: In a round shape with 4 arms, this guard is a one-piece cast 356 aluminum mechanically assembled to the fitter.
Globe: (PC-CS), Made of one-piece seamless injected-molded satin clear polycarbonate. The globe is assembled on the access-mechanism.
Lamp: (included), Composed of 49 high performance white LEDs, 90w lamp wattage. Color temperature of 4000 Kelvin nominal. 70 CRI. Operating lifespan, 70,000 hours after which the system emits 70% of its original lumen output, all of those parameters are tested for 100% of light engines. Use of a metal core board insures greater heat transfer and longer lifespan of the light engine.
Optical System: (LE3S), I.E.S type III (asymmetrical). Composed of high performance collimators, optimized with varying beam angles to achieve desired distribution. System is rated IP66. Performance shall be tested per LM63 and LM79 (IESNA) certifying its photometric performance. Street-side indicated.
Driver: High power factor of 80%. Electronic driver, operating range 50-60 Hz. Auto-adjusting to a voltage between 120 and 277 volt AC Class II. Lamp starting capacity -40F(-40C) degrees. Certified in compliance to UL requirement. Weather tightness rating IP66. Assembled on a unitized removable tray with quick disconnect plug.
REMOTE BALLAST: Located and Installed by others. Verify the maximum distance of wiring in between the ballast to the lamp. The installation must be done accordingly in compliance with the electrical code in force.
Access-Mechanism: A gravity die cast 356 aluminum frame with latch and hinge. The mechanism shall offer toolfree access to the inside of the luminaire. An embedded memory-retentive gasket shall ensure weatherproofing.
Fitter: Cast aluminum 356 c/w 4 set screws 3/8-16 UNC. Fits on a 4'(102mm) outside diameter by 4'(102mm) long tenon.

Luminaire Options: (RBT), Remote Ballast assembled on a tray for pole base. (TN3), Fitter to fit over a 3' (76mm) O.D. by 4' (102mm) long tenon.

Wiring: Gauge (#14) TW wires, 6' (152mm) minimum exceeding from luminaire.

Hardware: All exposed screws shall be stainless steel with Ceramic primer-seal basecoat. All seals and sealing devices are made and/or lined with EPDM and/or silicone.

Finish: Color to be **black (BK)**. Application of a polyester powder coat paint. (4 mils/100 microns). The chemical composition provides a highly durable UV and salt spray resistant finish in accordance to the ASTM-B117-73 standard and humidity proof in accordance to the ASTM-D2247-68 standard.

Surface Finish: The above mentioned product has been specified in a smooth finish. We wish to inform you that Lumen cannot guarantee a finish without imperfections (e.g., apparent grinding marks and porosity). We strongly recommend the use of a textured finish which provides better uniformity of surface finish. No return of merchandise showing above mentioned imperfection will be granted.
E1.c.
SAMPLE PHOTOMETRICS SPACING OF 55 FEET – FOR PEDESTRIAN WALKWAYS, BIKEWAYS, AND ROADWAYS
LED FIXTURE FOR NEW CONSTRUCTION (AS APPROVED)

A. Optical System
 i. LED Type III

B. IES Classification
 i. Cutoff

C. On Center Spacing
 i. 55 Feet

D. Roadway Surface Horizontal Illuminances (foot-candles)
 i. Average: 1.20
 ii. Minimum: 0.20
 iii. Average/Minimum: 6.00
 iv. Maximum/Minimum: 11.00

E. Vertical Along Road Illuminances (foot-candles)
 i. Average: 1.08
 ii. Minimum: 0.30
 iii. Average/Minimum: 3.60
 iv. Maximum/Minimum: 5.67

F. Vertical Across Sidewalk Illuminances (foot-candles)
 i. Average: 0.27
 ii. Minimum: 0.20
 iii. Average/Minimum: 1.35
 iv. Maximum/Minimum: 1.50

G. Vertical Along Sidewalk Illuminances (foot-candles)
 i. Average: 1.14
 ii. Minimum: 0.60
 iii. Average/Minimum: 1.90
 iv. Maximum/Minimum: 2.83

H. Near Sidewalk Surface Horizontal Illuminances (foot-candles)
 i. Average: 1.17
 ii. Minimum: 0.30
 iii. Average/Minimum: 3.90
 iv. Maximum/Minimum: 6.00

I. Far Sidewalk Surface Horizontal Illuminances (foot-candles)
 i. Average: 0.30
 ii. Minimum: 0.10
 iii. Average/Minimum: 3.00
 iv. Maximum/Minimum: 4.00
E1.c.
SAMPLE PHOTOMETRICS SPACING OF 80 FEET – FOR PEDESTRIAN WALKWAYS AND BIKEWAYS
LED FIXTURE FOR NEW CONSTRUCTION (AS APPROVED)

A. Optical System
 i. LED Type III

B. IES Classification
 i. Cutoff

C. On Center Spacing
 i. 80 Feet

D. Vertical Along Sidewalk Illuminances (footcandles)
 i. Average: 0.49
 ii. Minimum: 0.40
 iii. Average/Minimum: 1.23
 iv. Maximum/Minimum: 1.25

E. Sidewalk Surface Horizontal Illuminances (foot-candles)
 i. Average: 1.29
 ii. Minimum: 0.40
 iii. Average/Minimum: 3.23
 iv. Maximum/Minimum: 5.00
E1.c.

SAMPLE PHOTOMETRICS SPACING OF 110 FEET – FOR ROADWAY LIGHTING
LED FIXTURE FOR NEW CONSTRUCTION (AS APPROVED)

A. Optical System
 i. LED Type III

B. IES Classification
 i. Cutoff

C. On Center Spacing
 i. 110 Feet

D. Calculation Summary Showing
 Maintained Illuminances (footcandles)
 i. Average Horizontal: 0.74
 ii. Maximum Horizontal: 1.90
 iii. Minimum Horizontal: 0.20
 iv. Average/Minimum: 3.70
 v. Maximum/Minimum: 9.50
 vi. File: LU200035.IES

E. Light Loss Factors
 i. Ballast Factor: 0.80
 ii. Lamp Lumen Depreciation: 0.80
 iii. Luminaire Dirt: 0.80
 iv. Depreciation
E1.d. FOR PEDESTRIAN WALKWAYS, BIKEWAYS, AND ROADWAYS - POLE
POLE FOR FIXTURES E1.a., E1.b., AND E1.c.

A. Note
 i. The UGA has sole source approval for this product. No substitutions will be accepted.

B. Specification
 a. Amerlux Exterior Lighting Pittsburgh D93-12 Series, 11'-9" Overall Height, Traditional styled tapered and fluted cast aluminum base (.250 min. wall) with exterior mounting plate, 13" round base cover, black textured powdercoat finish.

 ![Diagram of pole and fixture options]

 NOTE: SPECIFY ROUND BASE EVEN THOUGH SQUARE BASE IS SHOWN

 Pittsburgh Series

 Features
 - Traditional styled tapered and fluted cast aluminum base (.250 min. wall) with exterior mounting plate and 13" square base cover.
 - Optional height:
 - 4'' OD smooth round (1.25 wall)
 - 4'' OD fluted (1.25 wall)
 - 4'' OD tapered (1.25 wall)
 - 5'' OD fluted (1.50 wall)
 - 5'' OD tapered (1.50 wall)
 - Base shaft is on contractually welded to the base
 - 3" tanner for luminaire mounting
 - Strong yet lightweight for ease of installation
 - Galvanized anchor bolts included
 - Access door for wiring is secured with tamper resistant stainless steel screws
 - Ground lug provided inside base

 Materials
 - Base - Cast aluminum (A119)
 - Shaft - B ruled aluminum (5055-T6)
 - - Tapered aluminum (6063-T6)
 - Tanner - Cast aluminum (A130)
 - Anchor Bolt - Hot dip galvanized steel
Finish

The Pittsburgh Series pole will be finished with an electrostatically applied thermoset polyester powder coat. Prior to finishing, the parts are thoroughly cleaned using both abrasive and chemical methods. Our powder coat finish is durable, long lasting, attractive and scratch resistant as well as environmentally friendly. We offer 7 stock finishes or hundreds of special order colors including custom matching for existing projects (stock colors shown below).

<table>
<thead>
<tr>
<th>Standard solid colors are:</th>
<th>Premium finishes are:</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRN - Green</td>
<td>GTG - Granite Green</td>
</tr>
<tr>
<td>CLB - Classic Bronze</td>
<td>ATC - Antique Copper</td>
</tr>
<tr>
<td>TBLK - Textured Black</td>
<td>WHT - White</td>
</tr>
</tbody>
</table>

`Shown with optional round base cover (D94R-16)`.

Accessories

See “Accessories” section for more information.

- **PCL**: Dusk to dawn photocell. Available for 120v (PCL) or 208-277v (PCL multi).

- **GFCI**: Ground fault circuit protected duplexes outlet. Available recess mounted (GFCI-RM) as shown or surface mount (GFCI-SM).

- **LR**: Cast aluminum decorative ladder rest. Slip fits 3" o.d. pole or trim (not designed to support ladder).

- **FPH-4 or FPH-5**: Extruded aluminum holder for 1" OD flag poles. Available for 4" OD and 5" OD non-tapered pole.

Anchor Details

1/4" x 8 Bolts Circle
1/2" x 24 Hot Dipped galvanized L-Type Anchor Bolts. (4) Bolts at 90°.
13" sq. base cover slips over pole to conceal anchor bolts.

Access Door

Must specify orientation of accessories when ordering.

Ordering Guide

```
Pole | Finish  
--- | -------  
D92-10 / BLK / XXX  
Pole Height | Accessories
```

800.364.0098
Fax: 801.997.5441
www.amerluxexterior.com
1. GENERAL
 A. Related sections:
 i. 26 56 00 – Exterior Lighting
 B. Surface Parking Areas
 i. Illuminance levels for most campus parking lots are based on low-use criteria, while a few parking areas fall into the medium-use category. Uniformity and glare control are the most important factors in parking area lighting design because they contribute the most to nighttime visibility. These factors should take precedence over measured light levels. Vertical illumination is also important for motorists to be able to see pedestrians or obstructions such as curbs or poles; it is also critical for facial recognition and threat detection. Finally, care should be taken to avoid shadows and minimize light pollution and trespass.
 a. Pole mounted IESNA full-cutoff fixtures or cutoff fixtures with max 2% upward lumens will be used for parking lot lighting. Off-street parking and small parking lots may be lit using the standard decorative pole provided illuminance requirements listed below are met.
 b. All parking lots on campus shall be illuminated in the same way. Provide a maintained average illuminance of 2 footcandle over the parking surfaces, with a minimum level of 0.2 footcandle at the ground plane, a minimum vertical illuminance of 0.1 footcandle measured 5'-0" above the ground plane, and a max/min uniformity ratio of 20:1 (this means that if the minimum is 0.2 footcandle, the maximum footcandle level shall not be higher than 4.0 footcandles).
 c. These values are based on the Ninth Edition of the IES Handbook. Justification for exceeding the minimum standards shall be submitted to the Office of University Architects for Facilities Planning during the design phase.
 C. Parking Garages
 i. Parking deck lighting shall be designed with two key principles in mind: First, idle modes shall be implemented during off-peak hours to reduce light pollution and energy consumption. Second, light trespass from the parking aisles and entrances shall be strictly contained.
 ii. All parking garages on campus shall be illuminated in the same way. Refer to the following table for minimum illuminance values and uniformity ratios to be achieved:
a. Higher illuminance is necessary at the entrances during the daytime in order to provide a transition from the bright sunlit exterior into the comparatively low interior light level. The fixtures providing this additional light shall be circuited separately from the general lighting fixtures and placed on a timeclock to turn them off from dusk to dawn.

b. If the garage has a top level that is open to sky, it shall have an maintained average illuminance level of at least 1 footcandle at the ground plane with a minimum maintained illuminance of 0.25 footcandle, and a minimum average vertical illuminance of 0.25 footcandle measured 5'-0" above the ground plane, and a max/min uniformity ratio of 15:1 (this means that if the minimum is 0.5 footcandle, the maximum level shall not be higher than 7.5 footcandles).

c. Illuminance levels for parking decks are based on IESNA 9th edition handbook.

d. Along with these requirements, the light exiting the parking garages needs to be controlled. In this effort, vertical illuminance levels on the perimeter wall surfaces facing into the garage shall not exceed 1 footcandle maintained at any point.

e. Lighting in garages containing CCTV cameras shall be coordinated with the security consultant. Depending on the model of camera used, a certain minimum vertical illuminance will need to be provided to properly allow the cameras to capture video.

f. Light fixtures with atmospheric backgrounds shall be white in color so as to blend in. As an example, light poles mounted on top of parking decks shall be white.
g. Lamp sources may include F32T8/4100K fluorescent or MH175 metal halide provided that the technical requirements are met as listed above. Color rendition capability of the source needs to be considered, so that a user may easily identify his or her vehicle. Fluorescent lamps shall have minimum 80CRI, metal halide 65+ CRI, and LED 70+ CRI.

h. All new and renovated parking garages that employ fluorescent or LED lighting, the following features and controls shall be incorporated in conjunction with a dedicated lighting relay panel (Wattstopper or similar):

1) Daylight sensors and daylight responsive switching/dimming along perimeter of the garage, as determined by the lighting designer.

2) The parking garage will be divided into zones based on circulation and occupancy patterns, and lighting at each zone will be controlled by astronomical timeclock and ceiling mounted occupancy/vacancy sensors strategically located to cover the zone. Timeclock will control the zones during the peak hours of the buildings, and the sensors will take over during off-peak hours. The sensors will be set to an adequate delay to prevent frequent switching cycles.

3) Sensors mounted to each fixture are not recommended, and will be reviewed on a case by case basis.

4) Commissioning and programming of the systems shall be included in base bids of the projects.

2. PRODUCTS

A. For Parking Lighting – Series E1

B. See following product cutsheets for additional specification information on Series E1:

 E3.a. Parking Surface Fixture – MH
 E3.b. Parking Surface Fixture – LED
E3.a.
FOR PARKING SURFACES
PARKING SURFACE FIXTURE – MH

A. Specification
i. Equal to KIM Lighting AR series die-cast aluminum fixture with tempered glass lens, 250W or 400W pulse start metal halide lamping and S-series ballast, mounting configuration and Type II, III, IV, or V distribution type as required and black powdercoat finish.

Specifications

Housing: One piece low copper less than 0.6% die-cast aluminum alloy with integral cooling ribs over the optical chamber and electrical compartment. Solid barrier wall separates optical and electrical compartments. Double-thick wall with gaskets on the support-arm mounting end. Housing forms a half cylinder with 35° front face plane providing a recess to allow a flush single-latch detail. All hardware is stainless steel or electro-zinc plated steel.

Lens Frame: One piece low copper less than 0.6% die-cast aluminum alloy lens frame with 3° minimum depth around the gasket flange. Integral hinges with stainless steel pins provide no-tool mounting and removal from housing. Single die-cast aluminum channel provides positive locking and sealing of the optical chamber by a one-piece extruded and weldnected silicone gasket. Clear 1/8" thick tempered glass lens retained by eight steel clips with full silicone gasketing around the perimeter.

Reflector Module: Specular Azoat® optical segments are rigidly mounted within a die-cast aluminum enclosure that attaches to the housing as a one-piece module. Reflector module is fieldrotateable in 90° increments. HPS and MW1 sockets are porcelain 48V pulse started mogul base. MH sockets are porcelain mogul base, pin-oriented, with molded silicone lamp stabilizer. All reflector modules are factory prewired with quick-disconnect plug and include silicone seal at the penetration of the internal barrier wall in the luminaire housing.

Electrical Module: All electrical components are UL and CSA recognized, mounted on a single plate and factory prewired with quick-disconnect plugs. Electrical module attaches to housing with two tool hinges and latches, accessible by opening the lens frame only. All ballasts are high power factor rated -20%, starting.

Support Arm: One piece extruded aluminum with internal bolt guides and fully radiused top and bottom. Luminaires/pole attachment is by internal draw bolts, and includes a pole reinforcing plate with wire stran relief. Arm is circular cut for specified round pole.

Optional Wall Mounting: Fixture mounted to poured concrete walls only. A modified support arm is provided with side access to allow field splices within the arm. A wall embedment bracket is provided to accept draw bolts, and a trim plate covers the wall-embedded junction Box. All wall mount components are finished to match the fixture.

NOTE: Junction Box in wall must provide adequate fixture support. See NEC sections 370-13, 17 and 410-14, 16.

Finish: Super EGC thermostatic polyester powder coat paint, 2.5 mil nominal thickness, applied over a chrome conversion coating 2500 hour salt spray test endurance rating. Standard colors are Flat, Dark Bronze, Light Gray, Platinum Silver, or White. Custom colors are available and subject to additional charges, minimum quantities and longer lead times. Consult representative.

Certification: UL Listed to U.S. and Canadian safety standards for wet locations. Fixture manufacturer shall employ a quality program that is certified to meet the ISO9001:2000 standard.

CAUTION: Fixtures must be grounded in accordance with local codes or the National Electrical Code. Failure to do so may result in serious personal injury.
Standard Features

Mounting
3Y configuration is available for round poles only.

Plan View:

<table>
<thead>
<tr>
<th>EPA:</th>
<th>1.2</th>
<th>2.4</th>
<th>2.0</th>
<th>3.2</th>
<th>3.2</th>
<th>3.9</th>
<th>n/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat. No.:</td>
<td>□ 1A</td>
<td>□ 2B</td>
<td>□ 2L</td>
<td>□ 3T</td>
<td>□ 3Y</td>
<td>□ 4C</td>
<td>□ 1W</td>
</tr>
</tbody>
</table>

Wall Mount

Fixtures
Cat. No. designates fixture and light distribution.
See the Kim Site/Roadway Optical Systems Catalog for detailed information on reflector design and application.

Flat Lens
Light Distribution:
- Type II: Full Cutoff
- Type III: Full Cutoff
- Type IV: Forward Throw Full Cutoff
- Type V: Square Full Cutoff

| Cat. No.: | □ AR2 | □ AR3 | □ AR4 | □ AR5 |

Electrical Module
HPS = High Pressure Sodium
MH = Metal Halide
PMH = Pulse Start Metal Halide

<table>
<thead>
<tr>
<th>ANSI Ballast Type</th>
<th>S-55</th>
<th>S-50</th>
<th>S-51</th>
<th>M-57</th>
</tr>
</thead>
<tbody>
<tr>
<td>250MH120</td>
<td>400MH120</td>
<td>250PMH120</td>
<td>400PMH120</td>
<td></td>
</tr>
<tr>
<td>250MH208</td>
<td>400MH208</td>
<td>250PMH208</td>
<td>400PMH208</td>
<td></td>
</tr>
<tr>
<td>250MH240</td>
<td>400MH240</td>
<td>250PMH240</td>
<td>400PMH240</td>
<td></td>
</tr>
<tr>
<td>250MH277</td>
<td>400MH277</td>
<td>250PMH277</td>
<td>400PMH277</td>
<td></td>
</tr>
<tr>
<td>250MH347</td>
<td>400MH347</td>
<td>250PMH347</td>
<td>400PMH347</td>
<td></td>
</tr>
<tr>
<td>250MH430</td>
<td>400MH430</td>
<td>250PMH430</td>
<td>400PMH430</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Socket</td>
<td>Mogul Base Pin-Oriented</td>
<td>Mogul Base Pin-Oriented</td>
<td>Mogul Base</td>
<td>Mogul Base</td>
</tr>
<tr>
<td>ANSI Ballast Type</td>
<td>M-58</td>
<td>M-59</td>
<td>M-138</td>
<td>M-135</td>
</tr>
</tbody>
</table>

Finish
Super TGIC powder coat paint over a chromate conversion coating.

Color: Black Dark Bronze Light Gray Platinum Silver White Custom Color

<table>
<thead>
<tr>
<th>Color:</th>
<th>Black</th>
<th>Dark Bronze</th>
<th>Light Gray</th>
<th>Platinum Silver</th>
<th>White</th>
<th>Custom Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat. No.:</td>
<td>□ BL-P</td>
<td>□ DB-P</td>
<td>□ LG-P</td>
<td>□ PS-P</td>
<td>□ WH-P</td>
<td>□ CC-P</td>
</tr>
</tbody>
</table>

*Custom colors subject to additional charges, minimum quantities and extended lead times. Consult representative. Custom color description:
E3.b.
FOR PARKING SURFACES
PARKING SURFACE FIXTURE – LED

A. Specification
 i. LED replacement for conventional source full-cutoff fixtures, equal to Lumen Roadstar, 4000K LED with 70 CRI, available in IESNA Type II, III, IV, and V distributions, black powdercoat finish
CROSS REFERENCE
ROADSTAR™ VS. COBRAHEAD LUMINAIRE

<table>
<thead>
<tr>
<th>TYPICAL COBRAHEAD HID</th>
<th>ROADSTAR™ WATTAGE¹</th>
<th>ENERGY SAVING</th>
</tr>
</thead>
<tbody>
<tr>
<td>70WPS</td>
<td>40W/940 LED4K</td>
<td>24%</td>
</tr>
<tr>
<td>100WPS</td>
<td>65W/40 LED4K</td>
<td>47%</td>
</tr>
<tr>
<td>150WPS</td>
<td>90W/40 LED4K</td>
<td>45%</td>
</tr>
<tr>
<td>250WPS</td>
<td>110W/40 LED4K</td>
<td>36%</td>
</tr>
<tr>
<td>700W4H</td>
<td>180W/40 LED4K</td>
<td>35%</td>
</tr>
<tr>
<td>1000W4H</td>
<td>40W/40 LED4K</td>
<td>49%</td>
</tr>
<tr>
<td>1000W4H</td>
<td>60W/40 LED4K</td>
<td>24%</td>
</tr>
<tr>
<td>1500W4H</td>
<td>90W/40 LED4K</td>
<td>47%</td>
</tr>
<tr>
<td>1500W4H</td>
<td>110W/40 LED4K</td>
<td>41%</td>
</tr>
<tr>
<td>2500W4H</td>
<td>150W/40 LED4K</td>
<td>35%</td>
</tr>
<tr>
<td>2500W4H</td>
<td>180W/40 LED4K</td>
<td>30%</td>
</tr>
</tbody>
</table>

¹ This chart covers roadway lighting only.

A photometric calculation is required in order to establish exactly which RoadStar™ wattage will replace the initial HID wattage.

OPTICAL SYSTEMS / LED

<table>
<thead>
<tr>
<th>OPTICAL SYSTEMS</th>
<th>FULL CUT-OFF</th>
<th>HYPER-EXTENSIVE</th>
<th>DISTRIBUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE2</td>
<td></td>
<td>LEH2</td>
<td>TYPE II / Asymmetrical distribution</td>
</tr>
<tr>
<td>LE3</td>
<td></td>
<td>LEH3</td>
<td>TYPE III / Asymmetrical distribution</td>
</tr>
<tr>
<td>LE4</td>
<td></td>
<td>LEH4</td>
<td>TYPE IV / Asymmetrical distribution</td>
</tr>
<tr>
<td>LE5</td>
<td></td>
<td></td>
<td>TYPE V / Symmetrical distribution</td>
</tr>
</tbody>
</table>

VOLTAGE

120 / 208 / 240 / 277

LUMINAIRE OPTIONS

PHI: Photoelectric Cell, TwistLock Type c/w receptacle
RC: Receptacle for a twist-lock photoelectric cell or a shorting cap
WPG: Without protective grid
BL: Bubble level
D MG: 0.50 volt dimming-ready power supply

NOTE: Lighting control available. Contact Philips Lumelec.

Philip Lumelec reserves the right to substitute materials or change the manufacturing process of its products without prior notification.
For the latest updates go to www.lumelec.com
MOUNTINGS
(Consult the Pole Guide for details and the complete line of mountings)

POLES AND POLE OPTIONS
(Consult the Pole Guide for details and the complete line of poles)

FINISHES
(Consult Philips Lumen’s Color Chart for complete specifications)
The specially formulated Luminal powder coat finish is available in a range of many standard colors.

ORDERING SAMPLE

<table>
<thead>
<tr>
<th>LUMINARIE</th>
<th>LAMP</th>
<th>OPTICAL SYSTEM</th>
<th>VOLTAGE</th>
<th>MOUNTING & CONFIGURATION</th>
<th>POLE</th>
<th>FINISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPG5</td>
<td>60W T12 HDOT</td>
<td>LE 3</td>
<td>DO</td>
<td>AC4-JA</td>
<td>SSANV-20</td>
<td>BLTX</td>
</tr>
</tbody>
</table>

Philips Lumen reserves the right to substitute materials or change the manufacturing process of its products without prior notification.
For the latest updates go to www.lumen.com
E3.c.
FOR PARKING SURFACES
POLE FOR FIXTURES E3.a. AND E3.b.

A. Specification
 i. Equal to KIM Lighting PTRS series round steel tapered pole, 20, 25, or 30 feet
 height as required, cast aluminum pole cap as required, wall thickness to be
 confirmed by structural engineer and black (or white, on top of parking deck)
Standard Features

Pole Catalog No.

<table>
<thead>
<tr>
<th>Pole Catalog Number</th>
<th>X x Y X Z</th>
<th>Bolt Circle Dia.</th>
<th>Anchor Bolt Projection</th>
<th>Anchor Bolt</th>
<th>Base Cover Size</th>
<th>Conduit Opening Dia.</th>
<th>Wind Map Steady Wind</th>
<th>Gusting Wind Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTRS20-61120</td>
<td>20 x 6.1 x 11 ga. 3.3^2</td>
<td>91/2 x 31/8</td>
<td>3/4 x 39 x 41</td>
<td>9 1/2 sq.</td>
<td>5 dia.</td>
<td>16.7</td>
<td>12.8</td>
<td>10.1</td>
</tr>
<tr>
<td>PTRS30-66120</td>
<td>30 x 6.5 x 11 ga. 3.7</td>
<td>9 1/2 x 31/8</td>
<td>3/4 x 39 x 41</td>
<td>10 sq.</td>
<td>5 1/2 dia.</td>
<td>19.5</td>
<td>15.1</td>
<td>12.1</td>
</tr>
<tr>
<td>PTRS25-66120</td>
<td>25 x 6.5 x 11 ga. 3.3^2</td>
<td>10 x 31/8</td>
<td>3/4 x 39 x 41</td>
<td>10 sq.</td>
<td>6 dia.</td>
<td>14.6</td>
<td>11.2</td>
<td>8.8</td>
</tr>
<tr>
<td>PTRS50-75120</td>
<td>50 x 7.5 x 11 ga. 3.3</td>
<td>10 1/2 x 31/8</td>
<td>3/4 x 39 x 41</td>
<td>11 sq.</td>
<td>6 dia.</td>
<td>13.2</td>
<td>10.1</td>
<td>7.9</td>
</tr>
<tr>
<td>PTRS30-81120</td>
<td>30 x 8.11 x 11 ga. 3.9</td>
<td>11 x 3 1/8</td>
<td>1 x 39 x 4 1/4</td>
<td>11 1/2 sq.</td>
<td>7 dia.</td>
<td>16.5</td>
<td>12.7</td>
<td>10.0</td>
</tr>
<tr>
<td>PTRS35-86120</td>
<td>35 x 8.5 x 11 ga. 3.6</td>
<td>11 1/2 x 3 1/8</td>
<td>1 x 39 x 4 1/4</td>
<td>12 sq.</td>
<td>7 dia.</td>
<td>13.9</td>
<td>10.6</td>
<td>8.3</td>
</tr>
<tr>
<td>PTRS39-9120</td>
<td>39 x 9.0 x 11 ga. 3.5</td>
<td>12 1/2 x 3 1/8</td>
<td>1 x 39 x 4 1/4</td>
<td>12 1/4 sq.</td>
<td>7 dia.</td>
<td>13.0</td>
<td>9.8</td>
<td>7.6</td>
</tr>
<tr>
<td>PTRS45-10120*</td>
<td>45 x 10.0 x 11 ga. 3.9</td>
<td>13 1/2 x 3 1/8</td>
<td>1 x 39 x 4 1/4</td>
<td>14 sq.</td>
<td>6 dia.</td>
<td>13.0</td>
<td>9.7</td>
<td>7.5</td>
</tr>
<tr>
<td>PTRS50-10120</td>
<td>50 x 10.0 x 11 ga. 3.2^2</td>
<td>13 1/2 x 3 1/8</td>
<td>1 x 39 x 4 1/4</td>
<td>14 sq.</td>
<td>6 dia.</td>
<td>9.4</td>
<td>6.9</td>
<td>5.1</td>
</tr>
<tr>
<td>PTRS50-11120*</td>
<td>50 x 11.0 x 7 ga. 4.2</td>
<td>15 x 4 1/8</td>
<td>1/4 x 42 x 6 1/4</td>
<td>15 sq.</td>
<td>7 dia.</td>
<td>24.1</td>
<td>18.5</td>
<td>14.5</td>
</tr>
</tbody>
</table>

2-piece pole. See page 1.

Mounting Arrangements

Allowable pole EPA for jobsite wind conditions must be equal to or greater than fixture mount EPA.

Post Top and Side Arm Views

Mounting Limitations:

1. For Side Arm Mounted EKG fixtures, only A and B mounting configurations can be used with these poles.
2. When using VLP, CCP, and CCSP Post Top Mounted fixtures, DM Mounting must be used with these poles. See Kim catalog for these fixtures.

© 1998 KIM LIGHTING INC. • PO. BOX 60889, CITY OF INDUSTRY, CA 91716-0080 • TEL: 626/389-5666 • FAX: 626/389-2695

© 1998 KIM LIGHTING INC. • PO. BOX 60889, CITY OF INDUSTRY, CA 91716-0080 • TEL: 626/389-5666 • FAX: 626/389-2695

UGA DESIGN & CONSTRUCTION STANDARDS

DRAFT MAY 17, 2013

PARKING LIGHTING

26 56 16-10
A. HID Fixture Specification

i. Equal to KIM Lighting PGL5 fixture, 175W metal halide lamping with HPF magnetic ballast, UV stabilized acrylic refractor lens, tamper resistant latches and integral quartz standby as required, standard white powdercoat finish.

Standard Features

<table>
<thead>
<tr>
<th>Electrical Module</th>
<th>Cat. Nos. for Electrical Modules available:</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPS = High Pressure Sodium</td>
<td>100HPS120 150HPS120 100PMH120 150PMH120</td>
</tr>
<tr>
<td>PMH = Pulse Start Metal Halide</td>
<td>100HPS208 150HPS208 100PMH208 150PMH208</td>
</tr>
<tr>
<td>MH = Metal Halide</td>
<td>100HPS240 150HPS240 100PMH240 150PMH240</td>
</tr>
<tr>
<td></td>
<td>100HPS277 150HPS277 100PMH277 150PMH277</td>
</tr>
<tr>
<td></td>
<td>100HPS347 150HPS347 100PMH347 150PMH347</td>
</tr>
<tr>
<td></td>
<td>100HP480 150HP480 100PMH480 150PMH480</td>
</tr>
</tbody>
</table>

Caution:

All manufacturers of metal halide lamps recommend turning them off for 15 minutes, once per week, when under continuous operation. This will reduce the risk of arc tube rupture at end of life. Also, color temperature may differ between manufacturers of metal halide lamps. See lamp manufacturers’ specification sheets.

All fixtures are available pre-lamped by Kim. Consult representative for pricing.

Note: For lamp/ballast information outside of the U.S. and Canada, please consult your local Kim representative.
Optional Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>G12 Socket</td>
<td>Optional G12 base socket available for 150 Watt Pulse Start Metal Halide lamp only, T-6 Bipin configuration. Must use UV filtering lamp. Available on 150PMH only.</td>
</tr>
</tbody>
</table>
| **Standby Lamping** | - **QS QUARTZ STANDBY**
Integral current sensing relay energizes a T-4 mini-can socket during lamp warm-up and after power interruption. Socket de-energizes prior to the H.I.D. lamp reaching full brightness. T-4 mini-can halogen lamp by others. 100 Watt maximum. **NOTE:** Input amps will increase by .80 with this option.
- **FLS FLUORESCENT STANDBY**
Integral current sensing relay energizes an integral fluorescent ballast during lamp warm-up and after power interruption. Ballast de-energizes prior to the H.I.D. lamp reaching full brightness. 22 Watt T-5 circular fluorescent lamp by others. |
| **Acrylic Refractor** | Injection molded UV stabilized acrylic having the same prism design and optical characteristics as the standard Lexan® SLX. However, the overall depth is 1⁄8" greater than the standard refractor, and increases the luminaire efficiency by minimum 5%. |
| **Tamper-Resistant Latches** | Stainless steel captive hex socket (Allen) shoulder screws secure latches in locked position. |
| **Fusing** | High temperature fuse holders factory installed inside the fixture housing. Fuse is included. |

Line Volts:
- **SF** 120V
- **DF** 208V
- **DF** 240V
- **SF** 277V
- **SF** 347V
- **DF** 480V

© 2005 KIM LIGHTING INC. • P.O. BOX 60010, CITY OF INDUSTRY, CA 91748-0010 • TEL: 626/898-0866 • FAX: 626/969-2696 51605305108
Location: PARKING GARAGE HID FIXTURE

PGL5

Universal Parking Garage Luminia with Magnetic Ballast

Type:

Job:

Fixture Catalog number:

- **Specifications**
 - **Speed Mount:** Electro-zinc plated steel for mounting to standard 4" Junction Box or mud-box. Fixture hangs from hooks to free both hands to make field wire connections. Allows tool-free fixture mounting to Junction Box, with integral anti-theft lock.
 - **Electrical Housing:** Die-cast, low copper (<0.6% Cu) aluminum for direct mounting to the Kim Speed Mount. Wire entries are sealed by a silicone grommet. Integral latches (2) are die-cast aluminum with stainless steel springs and stainless steel hangers for the reflector.
 - **Refractor:** Standard refractor is one-piece injection molded non-yellowing Lexan® SLX, .125" minimum wall thickness. Optional refractor is one-piece injection molded UV stabilized acrylic, .125" minimum wall thickness. Refractor attaches to electrical housing with (2) no-tool quick release latches, with one latch captive as a hinge. Perimeter is fully sealed with a one-piece extruded silicone gasket, with the ends fused together to form a continuous piece, sealing the reflector to the electrical housing, and providing an IP66 fixture rating.
 - **Upper Reflector and Socket:** One-piece hydroformed aluminum with a vacuum metalized reflective finish and protective coating. Reflector has keyhole slots for no-tool removal from the electrical housing for ballast access. H.I.D. socket is 4KV pulse rated medium base. Optional G-12 base socket available for 150PMH lamp mode. Fluorescent sockets are universal for 26W, 32W, or 42W PL lamps.
 - **Reflector Modules:** Die-cast, low copper (<0.6% Cu) aluminum with a vacuum metalized reflective finish and protective coating. Reflectors are attached to the upper reflector, and configured for up-light, or restricted up-light depending on the specified fixture.
 - **Electrical Components:** Magnetic H.I.D. ballasts are high power factor, -20° starting, mounted directly to the electrical housing.
 - **Finish:** Standard finish on fixture electrical housing, optional PB2 and TB2, is white super TGIC powder coat paint applied over a Titandated Zirconium conversion coating. Consult factory for custom colors.
 - **CAUTION:** Fixtures must be grounded in accordance with national, state and/or local electrical codes. Failure to do so may result in serious personal injury.

Listings and Ratings

<table>
<thead>
<tr>
<th>UL cUL 1598</th>
<th>40C Ambient</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP66</td>
<td>Rated</td>
</tr>
<tr>
<td>ISO 9001:2000</td>
<td></td>
</tr>
</tbody>
</table>
E4.b.
FOR PARKING GARAGES
LINEAR FIXTURE – CFL

A. Fluorescent Fixture Specification
 i. Equal to GUTH Lighting vandal resistant DURASEAL fixture, acrylic lens with
 smooth outer surface, specular reflector, 2 – 32W T8 lamping with electronic
 instant start ballast, tamper-resistant and tool free latches, standard finish.

DURASEAL - Optional NSF - 40°C Listing - Occupancy Sensors

FEATURES
- 1400 - 30,000 lumens
- 2’, 4’ & 8’ fiberglass housings
- For general & task lighting
- 290°F Starting with T8HO lamps
- Tamper Resistant Latch Option
- Optional NSF Certification
- Moveable SS hanger straps
- Optional tamper resistant latch screws

APPLICATIONS
- Food & Beverage Plants
- Exterior Retail Areas
- Wastewater Treatment
- Schools - indoors and outside
- Parking garages & tunnels
- Freezers and storage
- Animal Containment
- Inspection & quality control

Chilled Storage Warehouse

SPECIFICATIONS/FEATURES

GENERAL
- Affordable specification grade wrap-around
- Optional occupancy sensors or switching

CONSTRUCTION
- One piece glass reinforced white fiberglass housing
- 1/2” conduit entries in both ends
- Tool free polycarbonate latches standard, SS optional
- Optional captive Stainless Steel latch
- Closed cell, high temperature poured in place gasket
- Includes moveable stainless steel hanger bracket
- Designed for on-site maintenance
- IP 65 - dust tight and suitable for heavy wash-down
- P 47 - dust tight and suitable for temporary immersion
- Ridge free lens minimizes dirt depreciation

LENSES/OPTICS
- Precision injection molded lenses (except 2” and 4” narrow)
- Impact resistant acrylic or polycarbonate optics
- Visor specular reflector - more light under the fixture

LISTINGS
- ETL W4x Location Listed up to 40°C
- European EEC listed for IP 65 & IP 67
- UL50A nonflammable housing

ELECTRONIC BALLASTS
- T8 - instant start design with 20% THD - up to 20°F starting
- T5 - programmed start ballast with 10% THD - 0°F starting

GUTH LIGHTING FOR DEMANDING ENVIRONMENTS

Page - F21A
Photometrics

2 Lamp F32 T8HO - VPL
DS4-A-F32-HO-VPL

2 Lamp F32 T8
DS4-A-F32-U

SMH 1.6 Across
Lamp Luminus 10,000
Fixure Efficiency 83%
0-30° - 0%
30°-80° - 25%
80°-90° - 45%

Dimensions - Lens - IP Rating - 40°C

Width
4’
4’
6.8’
6.8’
6.8’
Length
2’
2’
3’
3’
3’
Lamps
1
1
2,3
2,3,4,6
Lens
P ONLY
A or P
A ONLY
IP
IP 65
- IP 65
- NA
40°C
1.45.4T5
NA
2.42.9T54
4.42.9T54

Flexible, vandal resistant polycarbonate lens

Fixtures Snaps into moveable SS hanger
SS Keeper prevents loss of latch. Use for food processing.

Options

"SSK" - SS keeper latch (food plants)
"TP" - Tamper resistant latch screw
"AVPL" - A Vision Plus Specular Reflector (Narrow Beam optics)
"AH" - High light output F32T8 ballast (26"/34" 1.2 ballast factor)
"DM" - Dimming (Ballast - consult factory)
"OS" - Occupancy sensor (above 17°F)
"OS-LT" - Occupancy Sensor with High Humidity (40°F)
"SB" - Bodine B-70 Battery Emergency System (25°C)
"CDPL120" - 6’ cord & 120V plug for lamp locations only
"PT" - 6’ pigtail (for wet locations)
"PALP" - 6’ cord, wet location plug and receptacle
"CH" - 47" SS chain mount
"40°C" - 40°C listing - See Dimensions above

Notes:
1. Use T8HO lamps for -20°F starting
2. Consult factory for F17, F32, F44 & F66 ambient temperature limitations.

Project Name:
GUTH
A DIVISION OF JJI LIGHTING GROUP, INC. - 04/06

UGA DESIGN & CONSTRUCTION STANDARDS
DRAFT MAY 17, 2013

The University of Georgia
Office of University Architects for Facilities Planning

PARKING LIGHTING
26 56 16-15
E4.c.
FOR PARKING GARAGES
LED RETROFIT FOR FIXTURE E4.b.

A. LED Lamp Specification
 i. Equal to Bartco LED tube made of extruded aluminum/heat sink, extruded linear ribbed lens to hide direct view of emitters, 350mA driving current, installs in fluorescent sockets after bypass of fluorescent ballast, 4000K with 80CRI. Mock-up strongly recommended before permanent installations.

![Eco 8 LED](image)

Eco 8 LED
linear LED line voltage lamp

PERFORMANCE
- LED tubes are arranged in standard linear T8 fluorescent sizes
- Components can install as direct replacements for linear fluorescent lamp
- Construction: extruded aluminum body/heat sink
- LED lumen output: 100 Lumens/350 mA
- LED beam spread: 115°
- Linear lamp operating temperature: 50°C @ 25°C ambient
- Listing: ETL
- Base - medium Bi Pin

POWER SUPPLY
- Direct line voltage (120v) componentry, does NOT need an external driver
- Operating voltage 120V
- Output current 160mA

*Can be used with a variety of Bartco luminaires

*Fixture Sold Separately

<table>
<thead>
<tr>
<th>SPECIFICATION / ORDER FORMAT</th>
<th>DIMENSIONAL INFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>model no.</td>
<td>nominal length</td>
</tr>
<tr>
<td>Eco 8</td>
<td>2" Bi Pin - 23.2"</td>
</tr>
<tr>
<td></td>
<td>3" Bi Pin - 35.2"</td>
</tr>
<tr>
<td></td>
<td>4" Bi Pin - 47.2"</td>
</tr>
</tbody>
</table>

specification order
example: Eco 8-6 ww
Retrofit Luminaires with Electronic Ballast

NOT compatible with electronics ballast. Electronic ballast must be removed.

Step 1: Turn off main power before installation.

For safety, make sure main power source is switched off before attempting to install.

Step 2: Take off existing fluorescent light and disconnect the electronic ballast.

Step 3: Reconnect one end of the socket to power source. Please refer to below wiring diagram.

Adhere Label “AC Input” supplied in the package to the AC input end of the retrofit luminaire.

Step 4: Drop into the luminaire.

Note: The end labeled “AC Input” is AC Input end. Wrong connection will burn it out.

Step 5: Switch main power on to light up.

Wiring Diagram (Electronic Ballast)
A. **LED Fixture Specification**

i. Equal to Philips WideLite extruded aluminum construction with die-cast end caps, faceted reflector optics for indirect lighting with no view of LEDs, 350-700mA driving current, 4100K CCT with 70 CRI, integral dimming/occupancy sensor options.

VizorLED Gen-2 Ordering Matrix

Ordering Information

<table>
<thead>
<tr>
<th>Series/Size</th>
<th># of LEDs</th>
<th>Driver</th>
<th>Distribution</th>
<th>Voltage</th>
<th>Mounting</th>
<th>Options</th>
<th>Flash</th>
<th>Accessories</th>
</tr>
</thead>
<tbody>
<tr>
<td>VZ24</td>
<td>60G1</td>
<td>350</td>
<td>B</td>
<td>120</td>
<td>EZB</td>
<td>F1</td>
<td>TSA</td>
<td></td>
</tr>
<tr>
<td>VZ24</td>
<td>60G2</td>
<td>530</td>
<td>D</td>
<td>200</td>
<td>EZBP</td>
<td>F3</td>
<td>F1-KIT</td>
<td></td>
</tr>
</tbody>
</table>

VizorLED Gen-2 Installation Steps

1. PX10-KIT
2. PX10-KIT
3. PX10-KIT

Note:

- UNV includes 120-277V
- Specify voltage, with no unselectable options
- PX10-KIT includes PX10-HAP

UGA DESIGN & CONSTRUCTION STANDARDS

The University of Georgia

Office of University Architects for Facilities Planning

E4.d.

FOR PARKING GARAGES

VARIOUS SHAPES INTEGRAL LED

DRAFT MAY 17, 2013

UGA DESIGN & CONSTRUCTION STANDARDS

PARKING LIGHTING

DRAFT MAY 17, 2013

26 56 16-18
The University of Georgia
Office of University Architects for Facilities Planning

Technical data

VZ24-6002-350-B
VZ24-6002-630-B

<table>
<thead>
<tr>
<th></th>
<th>VZ24-6002-350-B</th>
<th>VZ24-6002-630-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total System Watts</td>
<td>69 W²</td>
<td>99 W²</td>
</tr>
<tr>
<td>Initial Lumens @ 25°C Ambient</td>
<td>5342 @ 350mA</td>
<td>7474 @ 530mA</td>
</tr>
<tr>
<td>Lumens per Watt @ 25°C Ambient</td>
<td>78</td>
<td>75</td>
</tr>
<tr>
<td>Initial Lumens @ 40°C Ambient</td>
<td>5188 @ 350mA</td>
<td>7228 @ 530mA</td>
</tr>
<tr>
<td>Lumens per Watt @ 40°C Ambient</td>
<td>78</td>
<td>73</td>
</tr>
<tr>
<td>Initial Lumens @ 50°C Ambient</td>
<td>5160 @ 350mA</td>
<td>7021 @ 530mA</td>
</tr>
<tr>
<td>Lumens per Watt @ 50°C Ambient</td>
<td>78</td>
<td>71</td>
</tr>
</tbody>
</table>

Notes: Technical data and performance are subject to change. Due to LED forward voltage variations and drive efficiency, total wattage may vary +/- 4%.

Dimensions

VZ24 E27 Easy Hanger Plate Mount (Standard) mount to standard 4" square octagonal boxes
Weight: 28 lbs, 12 ozs

VZ24 Thru-Wire Provision (1W Wire) thru wire outlet box with 3" conduit hole and box 0.989" backstop

VZ24 Pendant Mount (PND-RC-24LDS) painted by others, 3% N/4 in.

VZ24 Yoke Mount (Y) mount to standard 4" square octagonal boxes

Specifications

Rated System Life (LED life per L70)
Driver and LED bins: 100,000 hrs @ 35°C to 40°C (77°F to 104°F)
50,000 hrs @ 50°C (122°F), see page 8 for predicted life expectancy.

Construction
Single piece die-cast upper housing, Heavy duty extruded aluminum heat sink, 6063 T5, optically engineered.
Standard unit constructed to IP65. With Proxaima option, unit constructed to IP66. (IP65 version available Q1, 2013)

Non-Direct View (NDV) Optics
High lumen while LED array shielded from direct view, significantly reduces glare and provides up to 10% energy savings. Faceted MIRD reflector (min 54% reflectivity).

Energy Saving Features
System efficacy up to 78 lm/W with energy savings up to 70% over PSMH systems. (Meets DLC compliant guidelines). Optional Proxaima occupancy detector provides added energy savings of up to 30% during occupied periods and works as a Smart Plug-In, requiring no additional wiring or controls.

Driver
Driver efficiency (~90% standard). Constant current (G2): 530 mA. 120-480 V Volt range: -40°C (-40°F) to 50°C (122°F). Openloop circuit protection. Optional (0-10V dimming to 10% power). RuH-Compliant. See website for G2 Driver specs and details. Sturge protected standard. The surge protector is in accordance with IEEE AN S62.4.1.2 guidelines, with a surge current rating of 10,000 amps.

LED and Board Arrangements
LED only: minimum 122 lm/W. System only: 70-76 lm/W. Color temp: 4000 K (±250 K @ 0.95 CRI 75). Aluminum heat sink. Thermal resistance LID solder point to ambient: <=0.68°C per watt. LED junction to ambient: <=0.5°C per watt. RuH compliant. See website for LED spec sheets.

Distribution
Bi-directed symmetric or downlight distribution. VZ24 unit available ranging a 60 LED array.

Mounting
Standard mounting shall include a galvanized steel easy Hanger flange. Alternatively, unit may be pendant mounted to rigid conduit (by others), yoke mounted or specified with a thru wire provision.

Lumileaf Wireless Controls System
Lumileaf is an intelligent web-based system that operates through a high density mesh (HDMM) wireless technology radio modules with motion and photocell sensors that are integrated into each Vertex HD luminaire that enables the fixtures to communicate with the ZigBee protocol. The Gateway is a small computer that connects to the internet, and is located in the parking structure. The central Lumileaf database channel communication to and from the gateway, allowing data to be viewed or accessed through the web-based graphical user interface (GUI). See spec sheet WLF040418717 for complete details.

Proxaima Occupancy Detector
Optional. May be specified for additional energy savings during unoccupied periods. Standard dim level factory set to 10% Factory preset programmed or field programmable. Can be field installed. See Proxaima spec sheet WLF040418717 for factory preset settings and field programming instructions.

Lighting
ETL listed, listed to the UL 1598 standard, suitable for wet locations. Suitable for use in ambients from -30°C to 50°C (.4°F to 122°F). Vertex HD units with 18 optics are Daylighting Compliant and qualified products. The quality systems of this facility have been registered by UL to the ISO 9001 standards.

Finish
Standard finish of die-cast upper housing shall be Textured Silver Aluminum. Extruded (tinned) heat sink has a clear anodized finish.

Warranty
Standard 5 Year Limited Warranty.
The current Philips White Light Warranty may be found at www.white-light.com (Keywords: warranty) as well as the current Standard Terms and Conditions of Sale (Keywords: terms). All Sales of items in this catalogue shall be subject to the Philips White Light Standard Terms and Conditions of Sale current at the time of shipment. If you do not have a copy of the Philips White Light Warranty and Standard Terms, please contact the factory for same prior to ordering.
E4.e.
FOR PARKING GARAGES
LINEAR INTEGRAL LED

A. LED Fixture Specification
 i. Equal to BayLume extruded aluminum fixture with UV stabilized clean polycarbonate lens, Hi-Lo power option, surface/pendant mount, 5000K nominal CCT, CRI 70 minimum, -40C to +40C operation, all test results to be provided. Mock-up is a must before any determination of installation.

BayLume
This Industrial LED fixture is designed for use in warehouses, stockrooms, parking garages, gyms, tunnels and other applications that require widely distributed, glare-free light. Cool white light and high color rendering index provides excellent visibility which improves both safety and the appearance of your facility. The light weight, low footprint aluminum fixture and wide range power supply is easy to install with no special ballast or voltage source required.

<table>
<thead>
<tr>
<th>Features</th>
<th>24" (610mm)</th>
<th>48" (1219mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lumen Output</td>
<td>5773</td>
<td>6552</td>
</tr>
<tr>
<td>At operating temperature</td>
<td>90</td>
<td>88</td>
</tr>
<tr>
<td>Efficiency (lm/W)</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Color Temperature (CCT)</td>
<td>5000K</td>
<td>5000K</td>
</tr>
<tr>
<td>Color Rendering Index (CRI)</td>
<td>70</td>
<td>65</td>
</tr>
<tr>
<td>Rated Life</td>
<td>70,000 Hours</td>
<td>70,000 Hours</td>
</tr>
<tr>
<td>Lens</td>
<td>Clear Polycarbonate</td>
<td>Clear Polycarbonate</td>
</tr>
<tr>
<td>Housing</td>
<td>Black Anodized Aluminum</td>
<td>Black Anodized Aluminum</td>
</tr>
<tr>
<td>Mounting Options</td>
<td>Pendant, Surface, Stem</td>
<td>Pendant, Surface, Stem</td>
</tr>
</tbody>
</table>
| Dimensions | 24" | 24"
| | 24.25" x 9.3" x 4.5" | 24.25" x 9.3" x 4.5" |
| | 610mm x 241mm x 114mm | 610mm x 241mm x 114mm |
| | 48" | 48"
| | 48.20" x 9.3" x 4.5" | 48.20" x 9.3" x 4.5" |
| | 1220.5mm x 241mm x 114mm | 1220.5mm x 241mm x 114mm |
| Operating Temperature | -40C to +60C (-40F to +140F) | -40C to +60C (-40F to +140F) |
| Voltage | 120-277 VAC @ 50-60 Hz | 120-277 VAC @ 50-60 Hz |
| Rated Power Factor | <0.9 | <0.9 |
| Off State Power | Zero | Zero |
| Warranty | 5 Year Limited | 5 Year Limited |
| Certification | | |

Benefits
• Up to three times longer life at approximately half the energy consumption of conventional sources.
• Significantly longer life leads to reduced maintenance and material costs.
• Good color rendering for enhanced visibility and safety.
• Choice of mounting options to meet a variety of architectural forms in horizontal and vertical positions.
• Instant on/instant re-strike.

Dimensions

24"

48"
BayLume

ORDERING INFORMATION
EXAMPLE: BVYLCWCLR SRF 24 BLK

<table>
<thead>
<tr>
<th>Product</th>
<th>Color Temp.</th>
<th>Lens</th>
<th>Color</th>
<th>Mounting</th>
<th>Length (in)</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>111 BVYLCWCLR</td>
<td>CW White 5000K</td>
<td>CLR Clear</td>
<td>PND Pendant</td>
<td>24</td>
<td>BLK Black</td>
<td>[Standard]</td>
</tr>
<tr>
<td>SRF Surface</td>
<td>48</td>
<td>48" (1220mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BARM Beam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See drawings for actual lengths

Polar Candela
48" BayLume

Zonal Lumen Summary
(Lumens)

<table>
<thead>
<tr>
<th>Zone</th>
<th>Lumens</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-30</td>
<td>985.85</td>
<td>15.1</td>
</tr>
<tr>
<td>0-60</td>
<td>1784.46</td>
<td>26.10</td>
</tr>
<tr>
<td>0-90</td>
<td>3626.44</td>
<td>55.30</td>
</tr>
<tr>
<td>90-120</td>
<td>6011.31</td>
<td>91.60</td>
</tr>
<tr>
<td>90-130</td>
<td>437</td>
<td>6.70</td>
</tr>
<tr>
<td>90-150</td>
<td>489.80</td>
<td>7.50</td>
</tr>
<tr>
<td>90-180</td>
<td>550.91</td>
<td>8.40</td>
</tr>
<tr>
<td>0-180</td>
<td>6562.25</td>
<td>1000</td>
</tr>
</tbody>
</table>

Mounting Options
Pendant

Surface

Beam

North America • Australia • Asia • Europe
Preliminary. Specifications are typical values and may change without notice. Copyright © Lighting Science Group Corporation 2011 All rights reserved.

877-999-5742 | www.lsc.com
1227 South Patrick Drive Building 2A | Satellite Beach, FL 32937

UGA DESIGN & CONSTRUCTION STANDARDS
DRAFT MAY 17, 2013

PARKING LIGHTING
26 56 16-21
1. **GENERAL**
 A. Related sections:
 i. 26 56 00 – Exterior Lighting
 ii. 26 56 13 – Lighting Poles and Standards
 iii. 26 56 16 – Parking Lighting
 B. On Roadways, fixture spacing shall be maximized without compromising the technical design criteria. Additionally, roadway poles shall be placed only on a single side of the street to light the street unless strictly required to comply with the technical design criteria.
 C. Roads
 i. Collector (Intermediate Use) Roads
 a. Collector roadways shall be designed for an average maintained illuminance value \(E_{avg} \) of 0.9 footcandle and shall maintain an average/minimum uniformity ratio not exceeding 4:1 (this means that if the average number of footcandles at the ground plane is 0.9, the minimum footcandle level shall not be lower than 0.23 footcandles). These values are in accordance with the IES Handbook, Ninth Edition.
 ii. Arterial (Collector/Residential Use) Roads
 a. Arterial roadways shall be designed for an average maintained illuminance value \(E_{avg} \) of 0.6 footcandles and shall maintain a uniformity ratio not to exceed 4:1 average/minimum. (This means that if the average number of footcandles at the ground plane is 0.6, the minimum footcandle level shall not be lower than 0.15 footcandles.) These values are in accordance with the IES Handbook, Ninth Edition.
 iii. Local (Intermediate Use) Roads
 a. Local roadways shall be designed for an average maintained illuminance value \(E_{avg} \) of 0.7 footcandles and shall maintain a uniformity ratio not to exceed 6:1 average/minimum. (This means that if the average number of footcandles at the ground plane is 0.6, the minimum footcandle level shall not be lower than 0.12 footcandles.) These values are in accordance with the IES Handbook, Ninth Edition.

2. **PRODUCTS**
 A. See section 26 56 13 – Lighting Poles and Standards
1. **GENERAL**

 A. Related sections:

 i. 26 56 00 – Exterior Lighting
 ii. 26 56 13 – Lighting Poles and Standards
 iii. 26 56 33 – Walkway Lighting
 iv. 26 56 36 – Flood Lighting

 B. Building Entries: Lighting of building entrances provides a transition from a low exterior light level to much higher light levels inside while entering, and vice versa while exiting a building. As a rule, this lighting should follow criteria of exterior lighting discussed earlier, but with some alterations as described.

 i. Primary Building Entry Lighting

 a. This shall be provided by using wall surface mount or wall recessed fixtures, and ceiling surface or recessed fixtures where they can be easily accessed and relamped. No fixture shall be mounted above the height of 20'-0" A.F.G. without prior approval from Office of University Architects for Facilities Planning.

 b. Decorative fixtures shall be used in these locations only if approved by the Office of University Architects for Facilities Planning.

 c. An average maintained illuminance value (E_{avg}) of 3.0 footcandles and an average/minimum illuminance uniformity ratio of 3:1 measured at the ground plane will be provided within the footprint of the entrance area. If these fixtures also function as emergency egress lighting, ensure that the egress criteria given below and as per NFPA are met.

 ii. Exterior Emergency Egress Lighting

 a. Emergency egress sources shall be mounted above the doors to minimize glare wherever possible. At secondary building entrances, a single compact fluorescent fixture shall be centered directly above the door(s).

 b. LED fixtures may be used for these applications, but must be approved by the Office of University Architects for Facilities Planning.

 c. Provide an average maintained illuminance value (E_{avg}) of 1.0 footcandles and an average/minimum illuminance uniformity ratio of 10:1 measured at the ground plane. Lighting shall be designed to provide a minimum of 0.1 footcandle measured at the ground plane at a distance not less than 2 times the fixture mounting height and shall have IESNA full cutoff classification.

 iii. Service Area Lighting

 a. These shall be designed to provide the necessary average illuminance levels required based on the specific task in accordance with the IES Handbook, Ninth Edition. The luminaires used should be provided with shielding accessories such as glare shield, louvers or barn doors to avoid glare. As far as possible, fixed wall/column mounted full cutoff type luminaires shall be used for area lighting and adjustable floodlights shall be avoided due to light pollution concerns.
2. **PRODUCTS**

 A. For Site and Building Entry – Series E1

 B. See Section 26 56 13 – Lighting Poles and Standards; site lighting may be a mixture of light poles and building entry fixtures.

 C. See following product cutsheet for additional specification information on Series E1:

 E2.a RAB Lighting LED Wallpacks – LED
FOR BUILDING ENTRIES

LED WALLPACKS WITH LED LAMPING

A. Specification

i. Equal to RAB Lighting LED Wallpack (10, 13, 20 Watt Options), IESNA Full Cutoff, Fully Shielded Optics, Mount at 11-20'

ii. Black powdercoat finish; Design Professional to seek approval for finish color variance if placed on light color walls.

LED Info

<table>
<thead>
<tr>
<th>Watt</th>
<th>10W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color Temp</td>
<td>5000K (Cool)</td>
</tr>
<tr>
<td>Color Accuracy</td>
<td>30</td>
</tr>
<tr>
<td>L70 Life span</td>
<td>100,000</td>
</tr>
<tr>
<td>EMV (Mean)</td>
<td>54</td>
</tr>
<tr>
<td>Efficacy</td>
<td>41.7W</td>
</tr>
</tbody>
</table>

Driver Info

<table>
<thead>
<tr>
<th>Type</th>
<th>Constant Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>208V</td>
<td>0.14A</td>
</tr>
<tr>
<td>240V</td>
<td>0.12A</td>
</tr>
</tbody>
</table>

Technical Specifications

UL Listing:
Suitable for Wet Locations as a Downlight. Suitable for Damp Locations as an Uplight. Wall Mount Only.
Suitable for Mounting within 4ft. of ground.

Lumen Maintenance:
The LED will deliver 70% of its initial lumens at 100,000 hours of operation.

Finish:
Chip and fade resistant polyester powder coat finish.

Color Stability:
RAB LEDs exceed industry standards for chromatic stability.

Color Uniformity:

Cold Weather Starting:
The minimum starting temperature is -40F/deg.F-40F/deg.C.

Ambient Temperature:
Suitable for use in 50deg.C (104deg.F) ambient temperatures.

Fixture Efficacy:
41 Lumens per Watt.

Color Accuracy:
92 CRI

Color Temperature (Nominal CCT): 5000K
WPLED13

13 Watt high performance LED Wallpack with 5 conduit entry points. Equivalent to 150W MH. Includes both junction box and surface mount for recessed box. IESNA Full Cutoff, fully shielded optics. Mount at 11'-20'. 5 year warranty.

LED Info

<table>
<thead>
<tr>
<th>Watts</th>
<th>13W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color Temp.</td>
<td>5000K (Cool)</td>
</tr>
<tr>
<td>Color Accuracy</td>
<td>96</td>
</tr>
<tr>
<td>L70 Lifespan</td>
<td>100000</td>
</tr>
<tr>
<td>LM79 Lumens</td>
<td>1,064</td>
</tr>
<tr>
<td>Efficacy</td>
<td>71 LPW</td>
</tr>
</tbody>
</table>

Driver Info

<table>
<thead>
<tr>
<th>Type</th>
<th>Constant Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>120V</td>
<td>0.13 A</td>
</tr>
<tr>
<td>208V</td>
<td>0.08 A</td>
</tr>
<tr>
<td>230V</td>
<td>0.07 A</td>
</tr>
<tr>
<td>277V</td>
<td>0.06 A</td>
</tr>
<tr>
<td>Input Watts</td>
<td>15W</td>
</tr>
<tr>
<td>Efficiency</td>
<td>87%</td>
</tr>
</tbody>
</table>

Technical Specifications

UL Listing:
- Suitable for Wet Locations as a Downlight. Suitable for Damp Locations as an Uplight. Wall Mount only.
- Suitable for Mounting within 4ft. of ground.

Lumen Maintenance:
The LED will deliver 70% of its initial lumens at 100,000 hours of operation.

Cold Weather Starting:
The minimum starting temperature is -40°F/-40°C.

Ambient Temperature:
Suitable for use in 50°C (122°F) ambient temperatures.

Driver:
- Multi-chip 13W high output long life LED Driver
- Constant Current. Class 2 100V - 277V, 50/60 Hz

Surge Protection:
- 4kV

Color Temperature (Nominal CCT):
- 5000K

Fixture Efficacy:
- 71 Lumens per Watt

Color Accuracy:
- 66 CRI

Finish:
- Chip and fade resistant polyester powder coat finish.

Color Stability:
- RAB LEDs exceed industry standards for chromatic stability.

Color Uniformity:

Green Technology:
- RAB LEDs are Mercury and UV free.

Dark Sky Approved:
- The International Dark Sky Association approved this product as a full cutoff, fully shielded luminaire.

For use on LEED Buildings:
- IDA Dark Sky Approval means that this fixture can be used to achieve LEED Credits for Light Pollution Reduction.

Patents:
- The design of the LPACK is protected by U.S. Pat. D604,004 and patents pending in Canada, China and Taiwan.

IESNA LM-79 & IESNA LM-80 Testing:
- RAB LED luminaires have been tested by an independent laboratory in accordance with IESNA LM-79 and 80, and have received the Department of Energy "Lighting Facts" label.

Gaskets:
- High Temperature Silicone

Warranty:
- RAB LED fixtures give you peace of mind because both the fixture and driver components are backed by RAB's 5 Year Warranty. For more information,
WPLED20

20 Watt LED Wallpack with 5 conduit entry points. Equivalent to 150W MH. Includes both junction box and surface mount for recessed box. IESNA Full Cutoff, Fully Shielded optics. Mount at 11-20'. 5 year warranty. UL listed for up and down lighting.

LED Info

<table>
<thead>
<tr>
<th>Watts</th>
<th>20W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color Temp</td>
<td>5000K (Cool)</td>
</tr>
<tr>
<td>Color Accuracy</td>
<td>70</td>
</tr>
<tr>
<td>L70 Lifetime</td>
<td>100000</td>
</tr>
<tr>
<td>LM79 Lumens</td>
<td>1,401</td>
</tr>
<tr>
<td>Efficacy</td>
<td>64 LPW</td>
</tr>
</tbody>
</table>

Driver Info

<table>
<thead>
<tr>
<th>Type</th>
<th>Constant Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>120V</td>
<td>0.19 A</td>
</tr>
<tr>
<td>208V</td>
<td>0.12 A</td>
</tr>
<tr>
<td>24V</td>
<td>0.19 A</td>
</tr>
<tr>
<td>277V</td>
<td>0.08 A</td>
</tr>
</tbody>
</table>

| Input Watts | 22W |
| Efficiency | 91% |

Technical Specifications

UL Listing:
Suitable for wet locations. Suitable for mounting within 4' of the ground.

Lumen Maintenance:
100,000 hour LED lifespan based on IES LM-80 results and TM 21 calculations.

Cold Weather Starting:
The minimum starting temperature is -40deg,F to 40deg,F.

Total Harmonic Distortion:
THD = 8.4%

Driver:
Two Multi-chip 10W high output long life LED Driver Constant Current, Class 2

Ambient Temperature:
Suitable for use in 50deg,C (122deg,F) ambient temperatures

Fixture Efficacy:
65 Lumens per Watt

Color Accuracy:
70 CRI

Color Temperature (Nominal CCT):
5000K (Daylight)

Thermal Management:
Integral cast aluminum mounting pad and external fins for optimal heat sinking to ensure cool operation with maximum LED life and light output.

Housing:
Precision die cast aluminum housing, lens frame and mounting plate.

Color: Bronze

Weight: 6.1 lbs

Two Mounting Options:
Junction Box with 5 Conduit Entry Points and Threaded Plugs for surface mounting plus Cover Plate for mounting over 4" recessed junction box included with WPLED20

Finish:
Chip and fade resistant polyester powder coat finish.

Color Stability:
RAB LEDs exceed industry standards for chromatic stability.

Color Uniformity:

Green Technology:
RAB LEDs are Mercury, Arsenic and UV free.

Dark Sky Approved:
The International Dark Sky Association has approved this product as a full cutoff, fully shielded luminaire.

For use on LEED Buildings:
IDA Dark Sky Approval means that this fixture can be used to achieve LEED Credits for Light Pollution Reduction.

Patents:
The LPACK design is protected under patents pending in the U.S., Canada, China, Taiwan and Mexico.
1. GENERAL
 A. Related sections:
 i. 26 56 00 – Exterior Lighting
 ii. 26 56 13 – Lighting Poles and Standards
 iii. 26 56 29 – Site & Building Entry Lighting
 B. Pedestrian Walkways/Bikeways (Adjacent To Roadways)
 i. Pedestrian walkways and bikeways adjacent to roads shall be designed for an
 average maintained illuminance value \(E_{\text{avg}} \) of 0.6 footcandle horizontal, and 1.1
 footcandle vertical, as measured 6'-0" above ground, and shall maintain an
 avg/min illuminance uniformity ratio not to exceed 4:1. (This means that if the
 average illuminance at the ground plane is 0.6 footcandles, the minimum
 illuminance shall not be lower than 0.15 footcandles.) These values are in
 accordance with the IES Handbook, Ninth Edition.
 C. Pedestrian Walkways/Bikeways (Distant From Roadways)
 i. Pedestrian walkways distant from roads and bikeways adjacent to roads, a
 minimum average maintained horizontal illuminance value \(E_{\text{avg}} \) of 0.5
 footcandles to identify obstacles on the pavement, and vertical illuminance of
 0.5 footcandle measured 6'-0" above ground, and shall maintain an
 average/min illuminance uniformity ratio not to exceed 5:1. (This means that if
 the average illuminance at the ground plane is 0.5 footcandles, the minimum
 illuminance level shall not be lower than 0.1 footcandles). Also important to
 security is a luminous environment, which extends out from the pavement and
 for a reasonable distance into the adjacent area. This extension should range at
 least six feet on either side of the pavement and have at least 1/3 of the value
 of the average illuminance level on the pavement. These values are in
 accordance with the IES Handbook, Ninth Edition.

2. PRODUCTS
 A. See Section 26 56 13 – Lighting Poles and Standards.
1. **GENERAL**

 A. Related sections:

 i. 26 56 00 – Exterior Lighting

 B. Existing ground-based flood lighting of building facades shall be phased out and are not allowed on new construction projects. For renovations, these types of lights are to be replaced with wall-mounted, dark-sky friendly (full cutoff or fully shielded) fixtures (as approved) or fixtures placed at the base of the structure rather than in the landscape.
GENERAL COMMUNICATIONS REQUIREMENTS

1. GENERAL
 A. Related sections:
 i. 27 05 26 – Grounding and Bonding for Communication Systems
 ii. 27 05 29 – Hangers and Supports for Communications Systems
 iii. 27 05 36 – Cable Trays for Communications Systems
 iv. 27 05 43 – Underground Ducts and Raceways for Communications Systems
 v. 27 05 46 – Utility Poles for Communications Systems
 vi. 27 05 53 – Identification for Communications Systems
 vii. 27 08 00 – Commissioning of Communications
 viii. 27 11 16 – Communications Cabinets, Racks, Frames, and Enclosures
 ix. 27 11 19 – Communications Termination Blocks and Patch Panels
 x. 27 11 23 – Communications Cable Management and Ladder Rack
 xi. 27 13 13 – Communications Copper Backbone Cabling
 xii. 27 13 13.13 – Communications Copper Cable Splicing and Terminations
 xiii. 27 13 23 – Communications Optical Fiber Backbone Cabling
 xiv. 27 13 23.13 – Communications Optical Fiber Splicing and Terminations
 xv. 27 13 33 – Communications Coaxial Backbone Cabling
 xvi. 27 13 43.43 – Cable Services Cabling
 xvii. 27 15 00 – Communications Horizontal Cabling
 xviii. 27 20 00.01 – Data Communications – Wireless
 xix. 27 41 00 – General Audio-Visual Systems Requirements
 xx. 27 41 00.01- Audio-Visual Control System
 B. Abbreviations
 i. ANSI – American National Standards Institute
 ii. APC – Angled Physical Contact (fiber connector)
 iii. CATV – Cable Television
 iv. EIA – Electronic Industries Alliance
 v. EITS – Enterprise Information Technology Services (UGA)
 vi. FCC – Federal Communications Commission
 vii. I.D. – Inside Diameter
 viii. ICEA – Insulated Cable Engineers Association
 ix. IDF – Intermediate Distribution Frame
 x. IEEE – Institute of Electrical and Electronics Engineers
 xi. MDF – Main Distribution Frame
 xii. MHz – Megahertz
 xiii. MM – Multi Mode Optical Fiber
 xiv. NEC – National Electrical Code
 xv. OFNP – Optical Fiber Non-Metallic Plenum
 xvi. OTDR – Optical Time Domain Reflectometer
 xvii. PAWS – Personal Access Wireless System
 xviii. RF – Radio Frequency
 xix. SC – Subscriber Connector (fiber connector)
 xx. SCS – Standard Cabling System
 xxi. SM – Single Mode Optical Fiber
xxii. TDR – Time Domain Reflectometer
xxiii. TR – Telecommunications Room
xxiv. TIA – Telecommunications Industry Association
xxv. UPC – Ultra Physical Contact (fiber connector)
xxvi. UTP – Unshielded Twisted Pair

C. EITS is the responsible unit for low-voltage systems installed at the University of Georgia. This responsibility includes but is not limited to any and all UGA property and structures including hand holes, maintenance holes, pull boxes, pedestals and enclosures as well as inside and outside plant installations.

D. The Telecommunications Contractor shall mean either:
 i. A telecommunications subcontractor retained by the Contractor.
 ii. A Telecommunications Contractor contracted directly with UGA.

E. Wiring and cross connect locations within a building are referred to as Telecommunications Rooms (TR’s). These rooms have traditionally been referred to as Main Distribution Frame (MDF) which serves the building, and Intermediate Distribution Frame (IDF) which is floor serving.

 i. When a discrepancy arises between the above mentioned standards and the standards contained in this document, it shall be brought to the attention of EITS immediately for resolution. Typically the more stringent of the two guidelines will be implemented.

G. The Telecommunications Contractor will obtain and supply copies of all required permits to Design Professional and Project Manager.

H. Periodic inspections to the telecommunications installation will be conducted by the Design Professional, Project Manager, EITS ensure that supplied materials and workmanship conform to the project requirements.

I. Design Review Requirements
 i. EITS shall be involved in all phases of design.
 ii. As the project moves toward the construction documentation and code review phases, it is required that the project construction documents be submitted to EITS for an internal review process for compliance with UGA standards. Plans are to be submitted for review at:
 a. Completion of Schematic Design;
 b. Completion of Design Development;
 c. At 50% completion of construction documents;
 d. At 85% completion of construction documents;
 e. At 100% completion of construction documents.
 iii. EITS will document any comments on these documents and provide these comments to the Project Manager. The Project Manager will forward comments to the Design Professional and the Design Professional shall provide timely and coordinated responses to all review comments.
iv. All drawings shall indicate the following information for copper feeder cable:
cable type, size, gauge, year installed, cable no., pair counts, distance(s), and any and all splice location(s).
v. All drawings shall indicate the following information for fiber feeder cable: type
cable, size, cable number, fiber count, distance(s), splice locations and cable length.
vi. All drawings shall indicate the following terminal information: terminal identity,
quantity and type of protectors, quantity and type termination blocks, cable and pairs entering and/or leaving.
vii. All drawings shall indicate the following information for riser cable: cable type,
size, gauge, year installed, length, splice points, cable number and pair count(s).

J. Design Coordination
i. During preliminary design, the Project Manager and Design Professional are to consult with EITS to ascertain the requirements for telecommunications use and installation. The Design Professional is to coordinate his work with other disciplines so that a cohesive set of documents is produced for the telecommunications work.

ii. During preliminary design the demarcations of which Work may be performed by EITS and which Work will be designed by the Design Professional and installed by the Contractor shall be determined.

iii. Typically for all Projects, empty racks are provided by the Contractor in the TR rooms and EITS is responsible for the design, procurement, and installation of electronic equipment in the racks and activation of the building system with the UGA network.

iv. Active telecommunications network equipment (electronics) will typically be supplied and installed by EITS but may be specified for installation by a Telecommunications Contractor in accordance with specifications from EITS. Project Manager shall verify requirements for each specific project with EITS during the design phase.

v. For smaller projects EITS may provide the installation of the entire system including exterior infrastructure cabling, interior cabling, and terminations.

vi. Conduit and cable trays are typically provided by the Contractor’s electrical subcontractor.

vii. For larger projects EITS typically provides administrative review and does not perform any of the cabling and termination installation.

viii. During preliminary design and design development the Project Manager and Design Professional are to consult with EITS to define system distribution strategies and to discuss any obstacles that might be preexisting in a building, or problems inherent in a particular design or structural system.

ix. The planning process shall include all Telephone, Data, and CATV services.

x. EITS will provide information on design requirements for point of entry and TR. This information will be based on the number of outlets anticipated for the project, the length of wiring runs in the project, the distance of terminations from Point of Entry and TR, and any other pertinent information.

xi. The Design Professional shall coordinate installation of the necessary connections to the appropriate maintenance hole/vault serving the campus infrastructure, with guidance and input from EITS.
xii. The Design Professional shall coordinate the type and position of the connection of the conduit into the maintenance hole/vault with guidance and input from EITS.

xiii. The Design Professional shall be responsible for coordination and installation of any needed infrastructure that might be necessary “behind” the first serving maintenance hole/vault back to the service entrance/TR serving this building.

K. Telecommunication Rooms

i. Wiring and cross connect locations within a building are referred to as Telecommunications Rooms (TR’s). There should be a minimum of one TR per floor. It is recommended that multiple TR be provided on the same floor if usable floor space exceeds 10,000 sq. ft. or the cable pathway length between the horizontal cross-connect in the TR and any telecommunication outlets being served exceeds 250 feet. The maximum allowable cable length of horizontal cable installed to outlets must not exceed 295 feet. When used for 10/100/1000BASE-T, the maximum allowed length of a Cat 6 cable Channel is 100 meters or 328 feet. This consists of 90 meters (295 ft) of solid "horizontal" cabling between the patch panel and the wall jack, plus 10 meters (33 ft) of stranded patch cable between each jack and the attached device. Since stranded cable has higher attenuation than solid cable, exceeding 10 meters of patch cabling will reduce the permissible length of horizontal cable. Pathway lengths should be kept to a maximum of 250 feet to accommodate the cable length.

a. The number of TR shall be approved by EITS to ensure horizontal category cable runs do not exceed a distance of 295ft (plus an additional 33ft for equipment jumpers).

ii. All buildings shall have a minimum of one dedicated Telecommunications Room (TR). This room may be used to terminate both backbone and horizontal cabling. In addition to cable terminations and cross connects, these rooms may serve to house equipment for data, video and other telecommunications equipment.

iii. These rooms are not to be shared facilities for other services such as, electrical, plumbing, or storage. Utilities such as HVAC duct work, sprinkler pipes, electrical conduits, drain pipes, or other water pipes or systems not providing direct service to the space shall not pass through the interior of the room.

iv. The TR shall be accessible from a hallway or other common space in the building. The room should have only one door to eliminate the possibility of the space being used as a passage.

v. NEC Section 110-16 provides requirements for working space and clearances around exposed electrical equipment. Per this requirement allow a minimum of 1 meter (3.3 ft.) of clear working space from equipment and equipment racks and any wall where wall mounted cross-connect fields are mounted when determining the size of the room. Design Professional shall indicate clearance areas on the plans.

vi. As a general rule, new construction will require a minimum of 8 square feet of telecommunications room space per 1000 square feet of building space, and one duplex communication outlet (2-Cat6 connections) for every 75 square feet of space for gross estimating purposes.
vii. Individual telecommunication rooms shall be sized to appropriately accommodate equipment to serve maximum drops required for programmed space type. A typical TR would be 8’ by 10’. For larger communications or extraordinary drop quantities, the telecommunications TR may require slightly more space.

viii. In existing, retrofit, or other building types, minimum Telecommunications Room sizes may not be possible. If the use of a shallow closet is approved by EITS, the minimum dimensions shall be 6’ deep by 8’ wide by 8’6” high. The door to the room shall be a minimum of 36 inches wide. If a double door is used, the center post shall be eliminated. Due to space limitations and safety concerns, no other equipment other than telecommunication related equipment and termination blocks shall be housed in the space. Refer to National Fire Protection Association 80.

ix. Renovations and small new structures and spaces may require less space for providing telecommunications services. In those cases, a single TR with less total square footage is adequate to serve the space. Project Managers and Design Professionals shall consult EITS to determine the actual size required for those TR.

x. In new buildings, TR shall be ideally designed to be vertically aligned directly above each other.

xi. All walls in TR will be furnished with full size panels of 4’x8’x¾” thick plywood backboards painted on all sides with fire retardant paint and mounted to all walls of the room.

xii. All access doors in the TR shall open outward unless prohibited by local codes. Inward swinging doors eliminate three (3) feet of useable wall space, therefore; room size shall be increased to compensate for the lost area.

xiii. The Design Professional is responsible for confirming that floor loading meets all applicable codes and shall confirm that the loads of the actual equipment to be housed are within the requirements.

xiv. To minimize dust and static electricity, floors shall be Static Dissipative Tile (or sealed concrete. Carpet is prohibited.

xv. These rooms must not house, or be near equipment (minimum of 10 foot radius) that emits high RF/Electronic Magnetic Interference radiation, or be exposed to any other adverse environmental conditions.

xvi. For security reasons TR shall solely be used for network infrastructure and network electronics. Use of TR for storage, office space, etc. is prohibited.

xvii. It is highly recommended that these rooms be equipped with a pre-active (dry pipe) sprinkler system in lieu of the traditional fire control sprinkler approach.

xviii. Each TR must be provided with a means of wiring egress. It is recommended that this be accomplished by providing four 3” or 4” diameter (deemed as appropriate by EITS) “home run” conduits with pull string in each conduit with pull boxes if needed, running from MDF to IDF #1 to IDF #2, etc., or by providing four 4” conduit sleeves in each TR room. However if this latter sleeve approach is used, the sleeves must extend to the cable tray in the hall.

xix. Under no circumstances shall any conduit contain more than two (2) 90 degree bends nor exceed 180 degrees of total bend without the installation of pull box(s) to accomplish the above.
xx. Cabling in walls is required to be in conduit; however, conduit home runs for telecommunications cabling are prohibited. At times, typically for security reasons, home run conduit may be necessary, but shall be approved through the variance process. Refer to 27 05 29 - Hangers and Supports for Communications Systems.

xxi. Fire Wall Penetrations
 a. Assume that an existing TR wall that goes all the way to the decking of the floor above it, or to the roof, is a firewall. All such walls are assumed to be firewalls unless the Contractor has specific and documented evidence to the contrary. If the Work utilizes an existing penetration through a fire rated wall, the Contractor is responsible for properly resealing the penetration per applicable codes.
 b. All new fire wall penetrations in either existing or new TR room perimeter walls, floors, or ceilings shall utilize an engineered fire wall penetration system that does not require reapplication of fire caulking each time new cabling is pulled through the sleeve.
 c. PVC conduit or metal conduit sleeves that are not part of a fire wall penetration system are prohibited.

xxii. Air Conditioning
 a. For spaces housing Active equipment, the temperature range should be 64F-75F, and the humidity range should be 30% to 55% relative humidity measured at 5ft. above the floor.
 b. For spaces without active equipment, the temperature range should be 50F-95F. It is preferable that the temperature range is maintained to within +/- 9F of the adjoining office space and that humidity be kept below 85% relative humidity measured at 5ft. above the floor.

xxiii. Electrical
 a. Ensure that Lighting fixtures are located a minimum of 8.5ft. above the finished floor and that light switches are located near the entrance. Light levels shall be at least 500 lux (50 foot-candles) measured at the points of cable termination.
 b. Minimum requirement of four dedicated 20 amp, 120volt circuits for electronic equipment power, each with double duplex receptacles placed at expected equipment locations, unless stated otherwise by EITS.
 c. Convenience power outlets should be provided every 6ft. along walls at a height of 6 inches, and connected to different branch circuits than the electronic equipment.
 d. If emergency (generator) power is provided for the building, it is strongly recommended that the network equipment in the TR be placed on these circuits.

L. Submittals
 i. Prior to starting any work, the Telecommunications Contractor shall furnish the required information in a single consolidated submittal (including samples and manufacturer’s product literature) to the Design Professional. The Design Professional will forward submittals to the Project Manager and EITS for additional review.
ii. The Telecommunications Contractor shall provide a list of any and all deviations in materials, construction and workmanship from those specified in the Standards or in the Contract Documents. The Design Professional, Project Manager, EITS will review the list and declare each item as either an approved exception, or as one the Telecommunications Contractor must correct.

M. Closeout
i. The UGA has records and drawings on paper of their telecommunications plant. As modifications or changes are made to the system, it is necessary to update the University drawings and records. Therefore, drawings and records must be provided on each project. Telecommunication Contractors will be given paper prints and they are required to prepare and provide scaled drawings illustrating the new distribution system(s). The Telecommunications Contractor will prepare and submit two copies of drawings (to scale) on white paper with black print. Approximate size should be, 24” x 36”. An electronic copy of all drawings produced in AutoCAD will also be required. The Telecommunications Contractor must deliver all drawings and test records to the Project Manager, Design Professional, and EITS.

ii. It is the Telecommunication Contractor’s responsibility to insure that all building, outside plant, station, and all other records and drawings that would relate to the project are updated and provided to the Project Manager, Design Professional, and EITS. This will include additions that are performed by other parties such as the Contractor or other subcontractors.

iii. The Telecommunications Contractor will furnish operating instructions, service and maintenance instructions, one-line diagrams, data sheets for the exact equipment installed, manufacturers parts lists and parts numbers or other identification established by the original manufacturer, schematic diagrams of the frames, and other diagrams included as part of the manufacturers data sheets. “As built and installed” drawings shall be included in the service manuals and shall show all cable and terminal markings corresponding with the equipment. Upon completion of all work, test results will be provided via actual records. One preliminary copy of the information shall be delivered to EITS for approval prior to the completion of the manuals. If additions or revisions are required, the Telecommunications Contractor shall make them and resubmit a preliminary manual. After approval, deliver two completed copies to EITS, and/or the Project Manager.

iv. Refer to section 27 08 00 Commissioning of Communications for testing requirements.

2. PRODUCTS
 A. All materials used in a plenum (wires, conduit, wire ties, etc.) must be plenum-rated.
 B. TR acceptable engineered fire wall penetration systems are equal to:
 i. EZ Path – 2” - #EZDP22-FWS, 3” - #EZDP33-FWS, 4” - #EZDP44-FWS
 ii. Hilti Speed Sleeve – 2” - #CP653-2”-BA, 4” - #CP653-4”-BA
 iii. Unique Fire-Stop, Split Sleeve for retrofit, 1” - #SSS-1, 2” - #SSS-2, 4” - #SSS-4

3. EXECUTION
 A. EITS reserves the right to exercise its discretion to require the Telecommunication Contractor to remove from the project any such employee that EITS finds to be incompetent, careless, or insubordinate.
B. Telecommunications Contractor Qualification Requirements: In order to assure the quality and reliability of the Telecommunications Contractor hired to perform Work, the UGA requires that Telecommunications Contractors meet the following criteria:

i. Shall be a firm normally employed in the low voltage cabling industry with a reference list of five (5) projects and contact names to confirm successful Category-rated UTP and Fiber-Optic cable projects.

ii. Must be licensed and bonded in the Georgia.

iii. Be in business a minimum of five (5) years.

iv. Shall demonstrate satisfaction of sound financial condition and can be bonded and insured if the project deems necessary.

v. Shall be able to obtain permits required to perform telecommunications installations in the specified jurisdiction.

vi. Shall have personnel knowledgeable in local, state and national codes and regulations. All work shall comply with the latest revision of the codes or regulations. When conflict exists between local or national codes or regulations, the most stringent codes or regulations shall be followed.

vii. Shall possess current liability insurance certificates.

viii. Shall be registered with Building Industry Consulting Services International and have at least one RCDD on staff.

ix. Shall have personnel fluent in the use of Computer Aided Design and possess and operate CAD software using .DWG or .DXF format.

x. Required Telecommunications Contractor Training:

a. The Telecommunications Contractor shall have personnel trained and certified in fiber optic cabling, splicing, termination and testing techniques. Personnel must have experience using an optical light source and power meter plus OTDR.

b. The Telecommunications Contractor shall have personnel trained in the installation of pathways and support for housing horizontal and backbone cabling.

c. All Telecommunications Contractors doing telecommunications work at UGA shall hold and show proof of current certifications on the following manufactures equipment regardless of the connectivity being installed:

 1) Corning
 2) Panduit
 3) Siemon
 4) Uniprise
1. GENERAL
 A. Related sections:
 i. 27 15 00 – Communications Horizontal Cabling
 B. Inside Horizontal Cabling
 i. A 250 MCM ground wire, run from the main building electrical panel, must be
 provided with ground bar.
1. GENERAL
 A. Related sections:
 i. 27 00 00 – Communications
 ii. 27 05 36 – Cable Trays for Communications Systems
 iii. 27 11 16 – Communications Cabinets, Racks, Frames, and Enclosures
 iv. 27 11 19 – Communications Termination Blocks and Patch Panels

2. PRODUCTS
 A. ERICO CADDY, J-Hook
 i. p/n CAT32 (2”)
 ii. p/n CAT64 (4”)

3. EXECUTION
 A. Under no circumstances shall the walls, ceiling, floor, etc. of a stairwell be penetrated.
 B. Under no circumstances shall cable be installed below ceiling in an exposed fashion, i.e.,
 all surface mounted cable shall be enclosed in conduit except when specified for
 architectural purposes.
 C. Cables shall not be tie wrapped or routed along electrical or gas conduit.
 D. Horizontal cable run in hallways above a suspended ceiling shall be in a cable tray or
 supported by J-hooks with a spacing of about 4-ft or 5-ft on center to minimize cable
 sag. Refer to 27 00 00 – Communications for limitations of conduit use.
1. GENERAL
 A. Related sections:
 i. 27 00 00 – Communications
 ii. 27 05 29 – Hangers and Supports for Communications Systems
 iii. 27 11 16 – Communications Cabinets, Racks, Frames, and Enclosures
 iv. 27 11 19 – Communications Termination Blocks and Patch Panels
 B. In general, J-Hook hanger installation method is preferred over cable trays due to ease of installation. Refer to section: 27 05 29 – Hangers and Supports for Communications Systems
 C. Under no circumstances shall the walls, ceiling, floor, etc. of a stairwell be penetrated.

2. PRODUCTS
 A. Cable Tray
 i. Hoffman Quick Tray Pro in 2”, 4”, or 6” depth, or equivalent.

3. EXECUTION
 A. The conduit for the telecommunications outlet shall run from a receptacle box (as marked on the building plans) to a cable tray in the hall way or as a minimum above the ceiling. Sleeves will need to be placed to the hallway cable tray if conduits do not run unbroken to cable tray from the outlet. From the hallway cable tray, cable will be routed to appropriate TR.
 B. Under no circumstances shall the walls, ceiling, floor, etc. of a stairwell be penetrated.
 C. Under no circumstances shall cable be installed below ceiling in an exposed fashion, i.e., all surface mounted cable shall be enclosed in conduit except when specified for architectural purposes.
 D. Cables shall not be tie wrapped or routed along electrical or gas conduit.
 E. Horizontal cable run in hallways above a suspended ceiling shall be in a cable tray or supported by J-hooks with a spacing of about 4-ft or 5-ft on center to minimize cable sag.
1. GENERAL

A. Related sections:
 i. 27 00 00 – Communications
 ii. 27 05 26 – Grounding and Bonding for Communication Systems
 iii. 27 05 46 – Utility Poles for Communications Systems
 iv. 27 13 13 – Communications Copper Backbone Cabling
 v. 27 13 13.13 – Communications Copper Cable Splicing and Terminations
 vi. 27 13 23 – Communications Optical Fiber Backbone Cabling
 vii. 27 13 23.13 – Communications Optical Fiber Splicing and Terminations
 viii. 27 13 33 – Communications Coaxial Backbone Cabling

B. This section constitutes the general outside infrastructure for telephone, data, and cable TV services for new buildings and renovation of existing buildings where expanded services to the building will be required. This section also applies to the installation of additional network services in existing buildings not undergoing renovation.

C. Service Entrance Requirements: The service entrance is the route by which telecommunication services and cables enter a building. Following is the guidelines to install service entrances to buildings and information for the termination of those cables. There are two types of service entrances:
 i. Underground Entrance – Buried Conduit. Conduit sizing and quantities between buildings, and/or maintenance holes and vaults shall be determined by the quantities and requirements for the cabling needed to serve the building.
 a. The recommended conduit size for use in an underground entrance is 4 inches in diameter. A minimum of one 4 inch conduit (with pull wire) for telephone, one 4 inch PVC conduit (with pull wire) for data/CATV, and two spare (empty) 4 inch PVC conduits (with pull wire) will be installed for most new buildings. Minimally, there needs to be one 4 inch conduit installed for each desired service (voice, data/CATV, and/or leased common carrier) along with one spare 4 inch conduit. Therefore, the minimum conduit run to any building would be 2, 4 inch conduits.
 ii. Buried Entrance – may be used for temporary service only. Permanent buried entrance method is prohibited.

D. Telecommunications Vaults - The University of Georgia has an extensive network of telecommunications conduit and maintenance holes throughout the campus. Design Professionals should assure that all projects connect to this system as needed. All new maintenance holes or telecommunication vaults shall be coordinated with EITS.
 i. Telecommunication vaults shall be placed in outside plant conduit runs at an interval no greater than every 400’ if a direct path between structures is attainable (i.e. no 90 degree bends) The maximum distance between maintenance holes shall be reduced by 50 feet for every 90 degree bend installed in the pathway up to a maximum of two bends.
 ii. Conduit routing between two telecommunications vaults, or between a vault and a building, shall contain no more than two 90-degree bends or a total of 180 degrees of bend. If additional conduit bends are required, additional vaults shall be placed as needed.
iii. Telecommunications vaults are typically constructed of pre-fabricated cast concrete, and contain a floor section, wall section, and top section. Vaults shall be a minimum of 6’ wide by 12’ long by 7’ headroom standard inside dimension. Smaller vaults may be used as a pulling point between the main conduit vaults and a building but only as a pass through with no splicing in them and shall be approved in advance by EITS.

2. PRODUCTS
 A. Underground Burial Conduit
 i. All buried conduit will be corrosive resistant, plastic polyvinyl chloride (PVC). Conduits shall be installed concrete encased; PVC conduit with concrete encasement is unacceptable.
 ii. Conduits shall have a nylon pull cord installed with a minimum test rating of 200lbs pulling strength in each conduit or compartment within the conduit.

 B. Telecommunications Vault:
 i. Acceptable vault manufacturers and part numbers are equal to:
 a. Manhole – Old Castle Precast
 b. Handhole – Quazite or NewBasis

3. EXECUTION
 A. Underground Burial Conduit
 i. Conduit must be buried at a minimum depth of 24 inches to the top of the concrete and encased in concrete rated at 3,000 psi. Conduit that will be placed under load should be encased in concrete rated to 3,500 psi. To minimize accidental digging or damage, a detectable, warning tape shall be placed in the trench a minimum of 12 inches below the surface and directly over the conduit. Install a # 6 ground wire at the bottom of the conduit path, terminate and ground in all pull boxes and terminate before entrance of any building with an 8 ft. long ground-rod. This is used to bleed off static charges and to provide a signal path to locate non-metallic systems.
 ii. Telecommunications conduit is not to be placed in the same trench or duct banks with other utilities. Design of underground conduit should be fully coordinated with EITS.
 iii. Entrance conduit must not have more than two 90 degree bends without a pull box, handhole or maintenance hole. Bends must be sweeping with a radius not less than 10 times the inside diameter of the 4 inch conduit.
 iv. All 4 inch conduits conveying fiber optic cable shall be compartmentalized into multiple channels via multi-cell duct liner.
 v. Conduits entering a building from below grade shall extend 4 inches above the finished floor.
 vi. Conduits entering the building through the ceiling shall extend to 8 ½ ft. above the finished floor.
 vii. Conduits entering the building through walls shall have sweeps installed in a manor that allows the conduit to extend to 8 ½ ft. above the finished floor.
 viii. All conduits entering buildings will be sealed to prevent water, noxious gases and rodents from entering the building.
 ix. All conduits shall be securely fastened to the structure to withstand typical cabling installation.
x. Telecommunications conduits are for the exclusive use of telecommunications cables. They shall not be shared with any other utility.

xi. Multiply service entrance conduits (two diverse routes) should be considered for buildings which provide crucial services, including research, health care and emergency services.
1. **GENERAL**

 A. Related sections:

 i. 27 00 00 – Communications

 ii. 27 05 43 – Underground Ducts and Raceways for Communications Systems

 B. Service Entrance Requirements

 i. Except for temporary service, aerial entrance method is prohibited.
1. **GENERAL**
 A. Related sections:
 i. 27 00 00 – General Communications Requirements
 ii. 27 05 26 – Grounding and Bonding for Communication Systems
 iii. 27 05 29 – Hangers and Supports for Communications Systems
 iv. 27 05 36 – Cable Trays for Communications Systems
 v. 27 05 43 – Underground Ducts and Raceways for Communications Systems
 vi. 27 05 46 – Utility Poles for Communications Systems
 vii. 27 08 00 – Commissioning of Communications
 viii. 27 11 16 – Communications Cabinets, Racks, Frames, and Enclosures
 ix. 27 11 19 – Communications Termination Blocks and Patch Panels
 x. 27 11 23 – Communications Cable Management and Ladder Rack
 xi. 27 13 13 – Communications Copper Backbone Cabling
 xii. 27 13 13.13 – Communications Copper Cable Splicing and Terminations
 xiii. 27 13 23 – Communications Optical Fiber Backbone Cabling
 xiv. 27 13 23.13 – Communications Optical Fiber Splicing and Terminations
 xv. 27 13 33 – Communications Coaxial Backbone Cabling
 xvi. 27 13 43.43 – Cable Services Cabling
 xvii. 27 15 00 – Communications Horizontal Cabling
 xviii. 27 20 00.01 – Data Communications – Wireless

 B. For this section, outlet shall mean telecommunications outlet.

2. **PRODUCTS**

3. **EXECUTION**
 A. Label all telecommunications infrastructure and equipment components in accordance with ANSI/TIA/EIA-606-B.
 i. For new construction, the Design Professional shall coordinate with the Project Manager and EITS to determine the outlet labeling scheme to include in the Contract Documents. See the following example:

 - **Building Number**
 - **Rack Number**
 - **Port Number**

 ii. For renovations, an existing telephone, data, and CATV labeling schemes are in place. The Design Professional and Telecommunications Contractor shall coordinate with the Project Manager and EITS to determine the outlet labeling schemes for the Project.

 B. All labeling shall be unique.
 C. All labeling shall be legible and made with a mechanical labeling system, **not handwritten**.
 D. All labeling shall be permanent enough to last the life of the component.
E. Labels at one end of cables, conduits, etc. shall exactly correspond with the label at the other end of the cable, conduit, etc.

F. The Telecommunications Contractor shall present all labeling schemes for approval to the Design Professional, Project Manager and EITS before any components are labeled at the Project.

G. The identification assigned to the jack shall be the same as the corresponding label on the patch panel.
1. **GENERAL**
 A. Related sections:
 i. 27 00 00 – General Communications Requirements
 ii. 27 05 26 – Grounding and Bonding for Communication Systems
 iii. 27 05 29 – Hangers and Supports for Communications Systems
 iv. 27 05 36 – Cable Trays for Communications Systems
 v. 27 05 43 – Underground Ducts and Raceways for Communications Systems
 vi. 27 05 46 – Utility Poles for Communications Systems
 vii. 27 05 53 – Identification for Communications Systems
 viii. 27 11 16 – Communications Cabinets, Racks, Frames, and Enclosures
 ix. 27 11 19 – Communications Termination Blocks and Patch Panels
 x. 27 11 23 – Communications Cable Management and Ladder Rack
 xi. 27 13 13 – Communications Copper Backbone Cabling
 xii. 27 13 13.13 – Communications Copper Cable Splicing and Terminations
 xiii. 27 13 23 – Communications Optical Fiber Backbone Cabling
 xiv. 27 13 23.13 – Communications Optical Fiber Splicing and Terminations
 xv. 27 13 33 – Communications Coaxial Backbone Cabling
 xvi. 27 13 43.43 – Cable Services Cabling
 xvii. 27 15 00 – Communications Horizontal Cabling
 xviii. 27 20 00.01 – Data Communications – Wireless

 B. The Telecommunications Contractor shall test every pair in every cable, on an end-to-end basis after splicing and termination for conformity to the design standards and specifications. The test procedures and results will be documented with certification that the system meets all applicable standards and specifications. The contract shall state the beginning date and duration of system acceptance checkout. Performance detail sheets will be submitted for final review and system acceptance by the University. Test record forms are to be completed and turned over to the Design Professional, Project Manager, and EITS.

2. **PRODUCTS**
3. **EXECUTION**
 A. Testing Parameters
 i. Optical Fiber Testing: Singlemode and Multimode Fiber
 a. Fiber horizontal cables shall be 100% tested for insertion loss and length.
 b. Insertion loss shall be tested at 850 nm and 1300 nm for 50/125um and 62.5/125um multimode cabling in at least one direction using the Method B (1-jumper) test procedure as specified in ANSI/TIA/EIA-526-14A.
 c. Insertion loss shall be tested at 1310 and 1550 for singlemode cabling in at least one direction using the Method A.1 (1-jumper) test procedure as specified in ANSI/TIA/EIA-526-7.
 d. Length shall be tested using an OTDR, optical length test measurement device or sequential cable measurement markings.
 e. The multimode backbone link performance guarantees are as follows:
Bandwidth is an important performance parameter, but because it is intrinsic to the fiber and cannot be adversely affected by installation practices, it does not require testing in the field.

The protocol pertinent to the transmission distances as noted is Gigabit Ethernet per IEEE 802.3:2000.

If the insertion loss is within the limits as noted in the above chart, it is indicative that the Return Loss performance of the link will be within the limits as indicated.

Acceptable attenuation test results shall be determined using the following calculation:

\[
\text{Link Attenuation} = \text{Cable Attenuation} + \text{Connector Attenuation} + \text{Splice Attenuation}
\]

where:

\[
\text{Cable Attenuation (dB) = Attenuation Coefficient (dB/km) x length (km)}
\]

\[
\text{Attenuation Coefficient = 3.5 dB/km @ 850 nm}
\]

\[
\text{Attenuation Coefficient = 1.0 dB/km @ 1300 nm}
\]

\[
\text{Connector Attenuation (dB) = Number of Connector Pairs (n) x Connector Loss = n x 0.75 dB}
\]

\[
\text{Splice Attenuation (dB) = Number of Splices (s) x Splice Loss (dB) = s x 0.3 dB}
\]

f. The singlemode backbone link performance guarantees are as follows:
Backbone Link Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Singlemode (1310nm/1550nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Insertion Loss (dB)</td>
<td>2.9/2.9</td>
</tr>
<tr>
<td>Zero Dispersion Wavelength (nm) ^1</td>
<td>1300 - 1322</td>
</tr>
<tr>
<td>Zero Dispersion Slope (nm^2•km) ^1</td>
<td><0.092</td>
</tr>
<tr>
<td>Gigabit Transmission Distance (m) ^2</td>
<td>3,000/3,000</td>
</tr>
<tr>
<td>10 Gigabit Transmission Distance (m) ^3</td>
<td>3,000/3,000</td>
</tr>
<tr>
<td>Min. Return Loss (dB) ^4</td>
<td>40</td>
</tr>
</tbody>
</table>

^1 Dispersion is an important performance parameter, but because it is intrinsic to the fiber and cannot be adversely affected by installation practices, it does not require testing in the field.

^2 The protocol pertinent to the transmission distances as noted is Gigabit Ethernet per IEEE 802.3:2000.

^3 The protocol pertinent to the transmission distances as noted is 10 Gigabit Ethernet per IEEE 802.3ae.

^4 If the insertion loss is within the limits as noted in the above chart, it is indicative that the Return Loss performance of the link will be within the limits as indicated.

Acceptable attenuation test results shall be determined using the following calculation:

\[
\text{Link Attenuation} = \text{Cable Attenuation} + \text{Connector Attenuation} + \text{Splice Attenuation}
\]

where:

- Cable Attenuation (dB) = Attenuation Coefficient (dB/km) x length (km)
- Attenuation Coefficient (Inside Plant) = 0.5 dB/km @ 1310 and 1550 nm
- Attenuation Coefficient (Outside Plant) = 0.4 dB/km @ 1310; 0.3 dB/km @ 1550 nm
- Connector Attenuation (dB) = Number of Connector Pairs (n) x Connector Loss = n x 0.5 dB
- Splice Attenuation (dB) = Number of Splices (s) x Splice Loss (dB) = s x 0.3 dB

OTDR (Optical Time Domain Reflectometer) Testing

In addition to insertion loss testing, OTDR testing shall be performed for each strand and OTDR traces provided. The wavelength(s) used in creating the OTDR trace should be the same as that used with the insertion loss testing. The OTDR trace characterizes elements along a fiber link, including fiber segment length, attenuation uniformity and attenuation rate, connector location and insertion loss, splice location and splice loss, and other power loss events such as a sharp bend that may have been incurred during cable installation.

Twisted Pair/ Copper Testing

- The current field acceptance test parameters for twisted-pair cabling are:
 1. All category 6 field-testing shall be performed with an approved level III balanced twisted-pair field test device.
2) All installed category 6 channels shall perform equal to or better than the minimum requirements as specified by the table below:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Performance @ 100MHz</th>
<th>Performance @ 200MHz</th>
<th>Performance @ 250MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>20.3 dB</td>
<td>29.7 dB</td>
<td>33.7 dB</td>
</tr>
<tr>
<td>NEXT Loss</td>
<td>42.1 dB</td>
<td>37.5 dB</td>
<td>36.1 dB</td>
</tr>
<tr>
<td>PS NEXT Loss</td>
<td>40.6 dB</td>
<td>36.1 dB</td>
<td>34.6 dB</td>
</tr>
<tr>
<td>ACR</td>
<td>21.8 dB</td>
<td>7.8 dB</td>
<td>2.4 dB</td>
</tr>
<tr>
<td>PS ACR</td>
<td>20.3 dB</td>
<td>6.4 dB</td>
<td>0.9 dB</td>
</tr>
<tr>
<td>ACR-F</td>
<td>23.9 dB</td>
<td>17.9 dB</td>
<td>15.9 dB</td>
</tr>
<tr>
<td>PS ACR-F</td>
<td>20.9 dB</td>
<td>14.9 dB</td>
<td>12.9 dB</td>
</tr>
<tr>
<td>Return Loss</td>
<td>14.0 dB</td>
<td>11.0 dB</td>
<td>10.0 dB</td>
</tr>
<tr>
<td>Propagation Delay</td>
<td>528 ns</td>
<td>527 ns</td>
<td>526 ns</td>
</tr>
<tr>
<td>Delay Skew</td>
<td>40 ns</td>
<td>40 ns</td>
<td>40 ns</td>
</tr>
</tbody>
</table>

b. Category 3, balanced twisted-pair horizontal and backbone cables, whose length does not exceed 90 m (295 ft) for the basic link, and 100 m (328 ft) for the channel shall be 100 percent tested according to ANSI/TIA/EIA-568-B.1. Test parameters include wire map plus ScTP shield continuity (when present), insertion loss, length and NEXT loss (pair-to-pair). NEXT testing shall be done in both directions.

c. All balanced twisted-pair backbone cables exceeding 90 m (295 ft) or 100 m (328 ft) shall be 100% tested for continuity if applications assurance is not required.

d. Category 6 balanced twisted-pair horizontal and backbone cables, whose length does not exceed 90 m (295 ft) for the basic link, and 100 m (328 ft) for the channel shall be 100 percent tested according to ANSI/TIA/EIA-568-B.1. Test parameters include wire map plus ScTP shield continuity (when present), length, NEXT loss (pair-to-pair), NEXT loss (power sum), ELFEXT loss (pair-to-pair), ELFEXT loss (power sum), return loss, insertion loss, propagation delay, and delay skew.

e. Test Equipment Criteria
1) All balanced twisted-pair field testers shall be factory calibrated each calendar year by the field test equipment manufacturer as stipulated by the manuals provided with the field test unit. The calibration certificate shall be provided for review prior to the start of testing.

2) Autotest settings provided in the field tester for testing the installed cabling shall be set to the default parameters

3) Test settings selected from options provided in the field testers shall be compatible with the installed cable under test.

iii. CATV Coaxial Cable Testing
 a. CATV coaxial cabling at 75 Ohms will be tested for bi-directional use
 b. DC loop resistance
 c. Impedance
 d. Length
 e. TDR
 f. Frequency Attenuation variation
 g. Structural loss- physical damage to cable
 h. These are tested with Digital Multi-meters, TDR's, Sweep Generation Testing and other testing equipment.

iv. Telephone Cable Testing
 a. All telephony cables shall be 100% tested for continuity.

v. Optical Cabling
 a. Multimode - The fiber cable shall be a graded index fiber with a nominal 50/125µm core/ cladding. The fiber shall conform to the following standards or international equivalents:
 ANSI/TIA/EIA-568-B (overall requirements)
 ANSI/TIA/EIA-492AAAC (Laser bandwidth DMD specification)
 ANSI/ICEA-83-596 (indoor optical cables)
 ANSI/ICEA-87-640 (indoor optical cables)
 b. Single-mode - The fiber shall be at least Class IVa Dispersion unshifted single-mode optical fiber. It shall conform to the following standards or international equivalents:
 ANSI/TIA/EIA-568-B (overall requirements)
 ANSI/TIA/EIA-492CAAA (fiber specifications)
 ANSI/ICEA S-83-596 (indoor optical cable)
 ANSI/ICEA S-87-640 (outdoor optical cable)
1. **GENERAL**

 A. Related sections:
 i. 27 00 00 – Communications
 ii. 27 05 29 – Hangers and Supports for Communications Systems
 iii. 27 05 36 – Cable Trays for Communications Systems
 iv. 27 11 19 – Communications Termination Blocks and Patch Panels
 v. 27 11 23 – Communications Cable Management and Ladder Rack

 B. Wall mount cabinets and free standing cabinets are acceptable for use. The Project Manager and Design Professional shall consult EITS for the acceptable circumstances under which this equipment can be used.

2. **PRODUCTS**

 A. TR Equipment
 i. Acceptable rack manufacturer(s) and part numbers are:
 a. Hoffman, p/n EDR19FM45U
 b. Siemon RS3 Series Racks, p/n RS3-07-S

 B. Fiber cables shall be terminated in Rack Mount Interconnect (RIC) Fiber Connect patch panels or Wall Mount Interconnect Center. Acceptable fiber optic panels and enclosures are:
 i. Corning Closet Connector Housing and Pretium Connector Housing
 a. CCH-01U or PCH-01U up to 24 fiber capacity (48 with LC’s)
 b. CCH-02U or PCH-02U up to 48 fiber capacity (96 with LC’s)
 c. CCH-03U up to 72 fiber capacity (144 with LC’s)
 d. CCH-04U or PCH-04U up to 144 fiber capacity (288 with LC’s)
 e. PCH-96F-01U 96 fiber capacity in 1U
 ii. Corning Wall-Mountable Connector Housing
 a. WCH-02P or PWH-02P up to 24 fiber capacity
 b. WCH-04P or PWH-04P up to 48 fiber capacity
 c. WCH-06P or PWH-06P up to 72 fiber capacity
 d. WCH-12P or PWH-24P up to 144 fiber capacity
 iii. Corning Closet Connector Housing Panels
 a. CCH-CPXX-YY
 1) XX = Fiber Count
 2) YY = Adapter Code
 3) Panels fit in CCH, PCH, and Wall Mount Housing
 iv. Siemon
 a. Siemon Rack Mount Interconnect Center
 p/n RIC3-24-01
 p/n RIC3-36-01
 p/n RIC3-48-01
 p/n RIC3-72-01
 b. Siemon Fiber Connect Panels
 p/n FCP3-DWR
 Siemon Wall Mount Interconnect Center
C. Acceptable fiber adapter panels manufacturer and parts numbers:
 i. Corning
 a. Corning Closet Connector Panels
 1) CCH-CP06-3C (6 fiber SC/UPC)
 b. CCH-CPXX-YY
 1) XX = Fiber Count
 2) YY = Adapter Code
 3) Panels fit in CCH, PCH, and Wall Mount Housing
 ii. Siemon
 a. Siemon Quick-Pack Adapter Plates
 p/n RIC-F-SC6-01 (SC/UPC)
1. GENERAL
 A. Related sections:
 i. 27 00 00 – General Communications Requirements
 ii. 27 05 29 – Hangers and Supports for Communications Systems
 iii. 27 05 36 – Cable Trays for Communications Systems
 iv. 27 11 16 – Communications Cabinets, Racks, Frames, and Enclosures
 v. 27 11 23 – Communications Cable Management and Ladder Rack
 vi. 27 13 13 – Communications Copper Backbone Cabling
 vii. 27 13 13.13 – Communications Copper Cable Splicing and Terminations
 viii. 27 13 23 – Communications Optical Fiber Backbone Cabling
 ix. 27 13 23.13 – Communications Optical Fiber Splicing and Terminations
 x. 27 13 33 – Communications Coaxial Backbone Cabling
 xi. 27 13 43.43 – Cable Services Cabling
 xii. 27 15 00 – Communications Horizontal Cabling
 xiii. 27 20 00.01 – Data Communications - Wireless

2. PRODUCTS
 A. TR Equipment
 i. Patch panel acceptable manufacturer(s) and part numbers are:
 a. Siemon HD 6 Patch Panels
 p/n HD6-24
 p/n HD6-4
 b. Siemon Angled Max Patch Panels
 P/n MX-PNLA-24
 c. P/n MX-PNLA-48Siemon MC-6 Modular Cat6 Patch Cable (use Blue unless otherwise approved by EITS)
 p/n MC6-(XX)-(XX) MC6, double-ended, 4pr stranded modular cord colored jacket with clear boot, T568A/B, CM/LS0H
 Use 1st (XX) to specify cable cord length:
 03 = 0.9m (3ft), 05 = 1.5m (5 ft), 07 = 2.1m (7 ft), 10 = 3.1m (10 ft.) 15 = 4.6m (15 ft), 20 = 6.1m (20 ft.)
 Use 2nd (XX) to specify cable color:
 01 = black, 02 = white, 03 = red, 04 = gray, 05 = yellow, 06 = blue, 07 = green, 08 = violet, 09 = orange
 Add “B” for bulk project pack of 100 modular cords Custom lengths are available upon request.
 ii. Voice termination block and / or panel acceptable manufacturer and part number is:
 a. Siemon S210 Field Termination Kits
 p/n S210AB2-64FT
 p/n S210AB2-192FT
 iii. Singlemode fiber jumper acceptable manufacturers and part numbers are:
 a. Corning Singlemode 2 Fiber Jumper, SC/UPC Duplex
 727202R5131001M (1m)
b. Corning Singlemode 2 Fiber Jumper, SC/APC
 656502R5131001M (1m)
 656502R5131002M (2m)
 656502R5131003M (3m)
 656502R5131005M (5m)

c. Siemon Singlemode Fiber Jumper, SC Duplex
 p/n FJ2-SCUSCUL-01 (1m)
 p/n FJ2-SCUSCUL-02 (2m)
 p/n FJ2-SCUSCUL-03 (3m)
 p/n FJ2-SCUSCUL-05 (5m)

iv. Multimode fiber jumper acceptable manufacturers and part numbers are:
 a. Corning 2 fiber 62.5/125 Multimode Fiber Jumper, SC, Duplex
 575702K5141001M (1m)
 575702K5141002M (2m)
 575702K5141003M (3m)
 575702K5141005M (5m)
 b. Corning 2 fiber Standard 50/125 Multimode Jumper, SC Duplex
 575702C5131001M (1m)
 575702C5131002M (2m)
 575702C5131003M (3m)
 575702C5131005M (5m)
 c. Corning 2 fiber Laser Optimized 50/125 Multimode Jumper, SC, Duplex
 575702S5180001M (1m)
 575702S5180002M (2m)
 575702S5180003M (3m)
 575702S5180005M (5m)
 d. Siemon 62.5/125 Multimode Fiber Jumper, SC, Duplex
 p/n FJ2-SCSC6MM-01 (1m)
 p/n FJ2-SCSC6MM-02 (2m)
 p/n FJ2-SCSC6MM-03 (3m)
 p/n FJ2-SCSC6MM-05 (5m)

3. EXECUTION
 A. Refer to section 27 05 53 Identification for Communications Systems for labeling of patch panels.
1. GENERAL
 A. Related sections:
 i. 27 00 00 – Communications
 ii. 27 05 29 – Hangers and Supports for Communications Systems
 iii. 27 05 36 – Cable Trays for Communications Systems
 iv. 27 11 16 – Communications Cabinets, Racks, Frames, and Enclosures
 v. 27 11 19 – Communications Termination Blocks and Patch Panels

2. PRODUCTS
 A. TR Equipment
 i. Acceptable cable management manufacturer(s) and part numbers are equal to:
 a. Hoffman CableTek Horizontal Cable Managers
 p/n DCHS2
 b. Hoffman CableTek Vertical Cable Managers
 p/n DV6D7, DV10D7, DV12D7
 c. Siemon RS3 Series Horizontal Cable Managers
 p/n RS3-RWM-2
 d. Siemon Vertical Patching Channels
 p/n VPC-6, VPC-12
1. **GENERAL**
 A. Related sections:
 i. 27 00 00 – Communications
 ii. 27 13 13.13 – Communications Copper Backbone Cabling Splicing and Terminations

2. **PRODUCTS**
 A. **Outside Cabling**
 a. Telephone backbone cable shall be type PE-89, 24-AWG, 100-ohm, Category 3, filled cable. The number of planned telephone outlets shall determine the number of telephone pairs needed for the building. As a general rule, the building shall be provided telephone pairs using the following equation: the number of outlets times 4 + 20% growth.
 b. Telephone – Superior Essex SEALPIC-FSF (Rural Utilities Service-PE-89) sized in a pair count as required by the project.

 B. **Inside Cabling**
 a. Twenty-four (24) gauge, plenum, CAT 3 or higher UTP copper cable (wire) shall be used for telephone riser and shall "home-run" from each IDF back to the MDF.
 b. This copper cable (wire) shall be large enough to provide a minimum of 1 ½ pair of wires per receptacle box served by that individual TR.
1. **GENERAL**
 A. Related sections:
 i. 27 00 00 – General Communications Requirements
 ii. 27 11 19 – Communications Termination Blocks and Patch Panels
 iii. 27 13 23.13 – Communications Optical Fiber Splicing and Terminations
 B. All fiber optic cable shall have at least 30 feet of additional cable (slack) on each end upon entering each TR.
 C. Outside Infrastructure Requirements
 i. Fiber optic backbone cabling shall be comprised of singlemode cable with each buffer tube containing 12 fibers. The actual fiber counts will be determined by building use, occupancy, and future bandwidth needs. EITS should be consulted to determine the needs.
 D. Inside Infrastructure Requirements
 i. The MDF shall be connected to each IDF with 12 singlemode and 12 multimode strands of OFNP type (optical fiber, non-metallic, plenum rated) "home-run" fiber optic cable.
 ii. The singlemode and multimode cables may be in separate sheaths.

2. **PRODUCTS**
 A. Outside Cabling
 i. Each buffer tube shall contain a water-swellable yarn or water blocking element for water-blocking protection. The water-swellable yarn or water blocking element shall be non-nutritive to fungus, electrically non-conductive, and homogeneous. It shall also be free from dirt or foreign matter. This yarn or element will preclude the need for other water-blocking material; the buffer-tube shall be gel-free.
 a. Singlemode backbone fiber shall meet Low Water Peak specifications per ITU-T G.652.C.
 ii. Outside cable acceptable manufacturers and part numbers are:
 a. Corning ALTOS All-Dielectric Gel-Free Cables
 Single-mode Cable XXXEU4-T4101D20
 B. Inside Cabling
 i. Singlemode Fiber Optic Cable acceptable manufacturer and part numbers:
 a. Corning MIC Plenum Cables - Tight Buffered
 12 Fiber Single-mode Cable 012E88-33131-29
 b. Siemon 12-strand Singlemode Indoor Tight Buffered Distribution Fiber, OFNP
 p/n 9BB8P012G-E205A
 ii. Multimode fiber shall be 50 micron and specified to accommodate 10 gigabit applications out to 300, 550, or 600 meters as required.
 iii. Only 50/125 Laser Optimized multimode fiber shall be used.
 iv. Multimode Fiber Optic Cable acceptable manufacturer and part numbers:
 a. Corning MIC Plenum Cables - Tight Buffered
 12 Fiber 50 micron Multi-mode (10g 300m) 012S88-33180-29
 12 Fiber 50 micron Multi-mode (10g 550m) 012S88-33190-29
b. Siemon 12-strand 50/125 Multimode Indoor Tight Buffered Distribution Fiber, OFNP
 p/n 9BB5P012G-T312

v. Armored OFNP cable may be used in the ceiling space instead of placing fiber optic cabling in conduit or innerduct, or where otherwise practical.
 a. MIC Interlocking armored Plenum Cables acceptable manufacturer and part numbers:
 Corning
 12 Fiber Single-mode Cable 012E88-33131-A3
 12 Fiber 50 micron Multi-mode (10g 300m) 012S88-33180-A3
 12 Fiber 50 micron Multi-mode (10g 550m) 012S88-33190-A3
 12 Fiber 50 micron Multi-mode (10g 600m) 012S88-33191-A3

3. EXECUTION
 A. All fiber shall not have a bending radius of more than ten (10) times the outside diameter of the cable, or exceed the bending radius specs of the cable manufacturer.
1. **GENERAL**
 A. Related sections:
 i. 27 00 00 – General Communications Requirements
 ii. 27 13 23 – Communications Optical Fiber Backbone Cabling
 B. General communication services shall be terminated with duplex SC/UPC.

2. **PRODUCTS**
 A. Outside Infrastructure
 i. Outside fiber closures acceptable manufacturers are:
 a. Corning Advanced Splice Closures (SCF)
 1) SCF-6C22-01 72 Fiber Splices
 2) SCF-6C28-01 144 Fiber Splices
 3) SCF-8C28-01 240 Fiber Splices
 4) SCF-8C28-02 480 Fiber Splices
 ii. The splice closure housing shall be non-metallic. It shall be resistant to solvents, stress cracking, and creep. The housing materials shall also be compatible with chemicals and other materials to which they might be exposed in normal applications. The splice closure shall be re–enterable. The closure end cap shall be capable of accepting additional cables without removal of the sheath retention or strength member clamping hardware on previously installed cables or disturbing existing splices. The optical fiber splice closure shall provide a clamping mechanism to prevent pistoning of the central member or strength members and to prevent cable sheath slip or pullout.
 B. Inside Infrastructure
 i. Fusion splice trays acceptable manufacturer(s) and part numbers are:
 a. Corning Splice Closure Trays
 1) SCF-ST-099 12 Fiber Heat Shrink Tray
 2) CF-ST-112 24 Fiber Heat Shrink Tray
 b. Siemon Fusion Splice Tray
 p/n TRAY-3
 ii. Singlemode pigtail acceptable manufacturer(s) and part numbers are:
 a. Corning
 1) Corning Single-mode Simplex Pigtail, SC/UPC, 1m
 005801R3131001M
 2) Corning Single-mode Simplex Pigtail, SC/APC, 1m
 006501R3180001M
 b. Seimon
 1) Siemon Singlemode Simplex Pigtail, SC/UPC, 1m
 p/n FP1B-SCUL-01
 2) Siemon Singlemode Simplex Pigtail, SC/APC, 1m
 p/n FP1B-SCA-01
 iii. Multimode pigtail acceptable manufacturer(s) and part numbers are:
 a. Corning 50/125 Multimode Simplex Pigtail, SC, 1m
 003901C3131001M Standard 50 micron Orange Jacket
 003901S3180001M Laser Optimized, 50 micron Aqua Jacket
b. Siemon 50/125 Multimode Simplex Pigtail, SC, 1m
 p/n P1B-SC5MM-01

3. **EXECUTION**

 A. All fibers shall be terminated with SC style connectors. Fusion spliced pigtailed, epoxy minimal polish connectors and UNICAM style connectors are all acceptable methods of fiber termination for backbone cables.

 B. Singlemode fiber should be terminated with a minimum of 1 pair of Angle Polish Connectors at each end of the cable to support video/CATV service.
1. **GENERAL**
 A. Related sections:
 i. 27 00 00 – General Communications Requirements
 ii. 27 13 43.43 – Cable Services Cabling
 B. Any individual cable length over 250 feet will need to be approved by EITS in writing prior to installation.
 C. For CATV services, fiber optic backbone cabling shall be terminated with a minimum 1 pair, green in color, Singlemode SC/APC connector at both ends of cable.

2. **PRODUCTS**
 A. Inside CATV Cabling
 i. CATV coaxial cable shall be plenum rated, quad-shielded, RG-6, from each outlet back to the appropriate TR with no more than 250 feet of cable. Use Commscope 2227V or General Cable C3525 ONLY. CATV Connectors
 a. Compression style CATV connectors with rubber o rings shall be used.
 Siemon RG6C Compression Connectors
 p/n RG6C
 PCT Compression connectors
 p/n DRS-6
 ii. CATV Patch Panels/Connectors
 a. Siemon MAX Patch Panel and F-Type MAX Modules
 p/n MX-PNL-24
 p/n MX-PNL-48
 p/n MX-F-FA-01

3. **EXECUTION**
 A. Cable shall be terminated on wall mounted patch panels/taps.
1. GENERAL
 A. Related sections:
 i. 27 00 00 – Communications
 ii. 27 05 53 – Identification for Communications Systems
 iii. 27 08 00 – Commissioning of Communications
 iv. 27 13 33 – Communications Coaxial Backbone Cabling
 v. 27 15 00 – Communications Horizontal Cabling
 B. EITS shall provide consultation and preliminary planning guidance to assist the Design Professional and Project Manager in determining the cabling requirements on a case-by-case basis for each building.
 C. The following general specifications will be required for buildings which are connected to The University of Georgia Cablevision network.
 i. The network must be two-way capable with 862 MHz actives and 1 Gig passives. The downstream frequency will be from 54 MHz-862 MHz for digital/analog video and data transmissions. The upstream frequency will be from 5 MHz - 42 MHz for digital/analog video and data transmissions.
 ii. The network must deliver a signal at the following levels:
 a. The signal level at each outlet/drop should have minimum of 6 dBmV and a maximum of 15 dBmV on all channels.
 b. The signal to noise ratio must be 43 dB or better.
 c. The signal to composite triple beat must be 51 dB or better.
 d. Network hum must be less than 1%.
 e. System response must be +/- 1.5 dBmV within any channel.
 f. Signal to beat interference must be 57 dB or better.
 g. For digital signals, a 32 MER reading or better is required.
 h. Radiation must be within FCC Specifications, i.e., less than 20 uv/m within ten feet with a tuned dipole antenna.
 iii. All rooms will be “home run” to TR equipment room(s). It is permissible for one loop-through within one room.
 iv. Cabling for CATV shall be placed in a 1” I.D. minimum conduit for up 6 cables.

2. PRODUCTS
 A. All outlets will be the standard CATV termination known as an F-81 barrel splice type connector (no solder or screw systems will be allowed).
 B. CATV: Coaxial Cable Preparation and Connection
 i. Hardline .500, .750, and .100 jacketed and unjacketed cables must be used.
 ii. The standard RG-6 connectors to be used are as follows:
 Siemon RG6C Compression Connectors
 p/n RG6C
 PCT
 p/n DRS-6
 C. RG-11 and RG-6 CATV cable
 i. Active and Passive RF Components:
 a. Fiber Node – Olsen Technology OTPN-400C, SC/APC
 b. Amplifier – Toner TIBA-37-1000
c. Taps – RMS brand Digitap’s
 ii. Coaxial cable acceptable manufacturer:
 a. RG-6 Commscope 2227V or general cable C3525 only.
 b. RG-11 Commscope 2287K or general cable equivalent.
 iii. Coaxial cable shall be plenum rated RG-6.

3. EXECUTION
 A. CATV: Coaxial Cable Preparation and Connection
 i. For flooded cable, clean flooding compound off the aluminum sheath to keep
 the ground loop complete.
 ii. Clean, sharp, serviced, coring tools must be used.
 iii. Metallic knives MAY NOT be used when cleaning dielectric from center
 conductor. This will cause a problem with the ‘skin effect’ for higher frequencies
 to ride on the cable center conductor. Use plastic removal tools.
 B. CATV: Activation and Testing
 i. Refer to Section 27 08 00 – Commissioning of Communications
 ii. Passives verification - use sweeping methods for verification.
 iii. All cables must be labeled with room number (where outlet is) both on the
 outlet and in the TR wiring closet. Refer to Section 27 05 53 – Identification for
 Communications Systems.
 C. RG-11 and RG-6 CATV wire
 i. Use proper preparation tools for specific connectors for correct installation.
 Change blades when necessary.
1. GENERAL

A. Related sections:
 i. 27 00 00 – General Communications Requirements
 ii. 27 05 26 – Grounding and Bonding for Communication Systems
 iii. 27 05 29 – Hangers and Supports for Communications Systems
 iv. 27 05 36 – Cable Trays for Communications Systems
 v. 27 05 43 – Underground Ducts and Raceways for Communications Systems
 vi. 27 05 46 – Utility Poles for Communications Systems
 vii. 27 05 53 – Identification for Communications Systems
 viii. 27 08 00 – Commissioning of Communications
 ix. 27 11 16 – Communications Cabinets, Racks, Frames, and Enclosures
 x. 27 11 19 – Communications Termination Blocks and Patch Panels
 xi. 27 11 23 – Communications Cable Management and Ladder Rack
 xii. 27 13 13 – Communications Copper Backbone Cabling
 xiii. 27 13 13.13 – Communications Copper Cable Splicing and Terminations
 xiv. 27 13 23 – Communications Optical Fiber Backbone Cabling
 xv. 27 13 23.13 – Communications Optical Fiber Splicing and Terminations
 xvi. 27 13 33 – Communications Coaxial Backbone Cabling
 xvii. 27 13 43.43 – Cable Services Cabling
 xviii. 27 20 00.01 – Data Communications - Wireless

B. The University Of Georgia’s High-speed data network is designed to accommodate Ethernet applications up to 1 Gigabit with a manufacturers guaranteed electrical performance up to 550 MHz for, 4 pair, 24 AWG, 100 ohm, UTP Category 6 cable. The applications for use would include; high-speed internet access, Voice Over IP (VoIP), and other current and emerging applications.

C. For this section, outlet shall mean telecommunications outlet.

D. Refer to section 27 00 00 Communications for Contractor qualification requirements.

E. Refer to section 27 05 09 Hangers and Supports for Communications and 27 05 33 Cable Trays for Communication Systems.

F. Only one telecommunications color scheme, white, (faceplate, wiremold, etc.) shall be used throughout the project. For areas that may require stainless steel or a different color, the Design Professional shall coordinate with the Project Manager and EITS to discuss options and approval must be obtained through the variance process.

G. A minimum of two blue jacketed plenum rated, Category 6 (Cat 6) UTP cables shall be run from the receptacle box (outlet) to the appropriate TR. Two Cat6 Communication cables, capable of delivering either data or voice services are typical per office space receptacle box.

H. Wiring shall be placed in 1” I.D. minimum conduit for up to 11 cables. There can be up to 44 cables in a 2” conduit, 98 cables in a 3” conduit, and 122 cables in a 4” conduit.

I. Under no circumstances shall any conduit contain more than two 90 degree bends nor exceed 180 degrees of total bend without the installation of pull box(s) to accomplish the above.

J. The outlet shall be a minimum of 1.75” deep, single gang box.

K. The outlet must be within 250 cable feet of the TR.
L. If divided raceway is used to serve both electrical and telecommunications, the raceway must be metal with dividers between.

M. At the outlet end, enough additional cable (slack) must be left to reach the farthest corner of the wall, plus five feet.

N. At the TR end, at least 15 feet of additional cable (slack) must be provided past the center point of the appropriate telephone or data racks.

O. For renovation projects when it is necessary to have exposed interior wiring runs, the wire shall be enclosed using wire molding or conduit. Under no circumstances should cable be installed below ceiling in an exposed fashion, i.e., all surface mounted cable should be enclosed in conduit.

2. PRODUCTS

A. Cabling / Cabling System

i. The cabling system shall be the Siemon System 6 UTP Cabling System.

ii. All cabling shall be blue jacketed and plenum rated.

iii. All cable shall be Siemon cable or approved Siemon cable partners. Acceptable CAT6 cables are:

a. Berktek LanMark 1000 10032093 (reel)

b. Berktek LanMark 1000 10032094 (box)

c. Berktek LanMark 1000 10065423 (reel in a box)

d. Berktek LanMark 2000 10032251

e. General Cable GenSpeed 6500 7131431

f. General Cable GenSpeed 6600 7131721

g. Mohawk AdvanceNet 6E M57193

h. Mohawk GigaLan 6E+ M57414

i. Siemon System 6 9C6P4-E3-06-RXA

j. Siemon Premium 6 9C6P4-E4-06-RBA

k. Superior Essex DataGain 450 66-272-2B (reel)

l. Superior Essex DataGain 450 66-246-2B (brake box)

m. Superior Essex DataGain 450 66-240-2B (POP box)

n. Superior Essex Nextgain 54-272-2B (reel)

o. Superior Essex Nextgain 54-246-2B (reel in a box)

iv. All telephone, data, and CATV installations shall include, but may not be limited to, the following Siemon System 6 UTP Cabling System products:

a. Category 6 Cross-Connect Wire

b. HD6 Patch Panels

c. MAX 6 Modules

d. MAX Modular Faceplates

e. MAX Patch Panels

f. MC 6 Modular Cords

g. S210 Connecting Block

h. S210 Field Termination Kits

B. Outlets

i. All surface mounted outlets shall be 4 port, white, Siemon MX-SM Surface Mount Box, part number MX-SM4-02 or MX-SM6-02 for 6 port box. All surface mount boxes will use Siemon Flat modules.

ii. All flush mount, in wall outlets shall use white Siemon MAX Modular single gang or double gang style faceplates in whatever port configuration is necessary.
iii. The following are suitable flush mount faceplate part numbers:
 - MX-FP-S-01-02 single gang 1-port
 - MX-FP-S-02-02 single gang 2-port
 - MX-FP-S-03-02 single gang 3-port
 - MX-FP-S-04-02 single gang 4-port
 - MX-FP-S-06-02 single gang 6-port
 - MX-FP-D-06-02 double gang 6-port
 - MX-FP-D-08-02 double gang 8-port
 - MX-FP-D-12-02 double gang 12-port

C. Jacks (Telephone, Data, and CATV, and modules)
 i. All voice and data jacks shall be Siemon white MAX 6 Modules, part number MX6-02 for angled jack or, part number MX6-F02 for flat jack with red icon to indicate data, and white slide-in icons to indicate voice connection. The cable must be installed so that mechanical strain does not reach the jack. Note: flat jack to be used for surface mounted boxes ONLY.
 ii. Flush mount faceplates, shall be Siemon, white, MAX 6 angled modules, part number MX6-02.
 iii. Surface mount boxes shall be Siemon, white, MAX 6 flat modules, part number MX6-F02.
 iv. CATV connections in flush mount faceplates shall use, Siemon, white, F-type coax MAX, flat module, part number MX-FA-02 mounted in a Siemon CT2-FP-02 faceplate in conjunction with bezel p/n CTE-MXA-01-01.
 v. CATV connections in surface mount boxes shall use part number MX-F-FA-02.

3. EXECUTION
 A. For labeling of data, telephone, and CATV outlets, refer to section 27 05 53 Identification for Communications Systems.
 B. Cable installation
 i. Cable ties must be trimmed off cleanly at a locking hole.
 ii. Cables shall be secured at every corner.
 iii. Cables shall be run in a uniform fashion and shall not be woven among other utilities.
 iv. Under no circumstances should cable be installed below ceiling in an exposed fashion, i.e., all surface mounted cable shall be enclosed in conduit.
 v. Cables shall not be tie wrapped or routed along electrical or gas conduit.
 vi. No cabling runs will exceed the specification of the cable used (receptacle box to serving TR wiring frame).
 C. Jack installation shall conform to ANSI/TIA/EIA-568-B (Commercial Building Telecommunications Cabling Standards).
 i. Before wiring the actual jacks, EITS must be contacted for purposes of approving the proposed wiring method. Failure to do so will result in non-compliance with the Standards.
 D. Jack Installation - Surface Mount
 i. Surface mount jacks shall be installed in accordance with NEC specifications.
 ii. Surface mount station jacks shall be mounted on wall at 1.5 feet from the floor (unless specified otherwise).
iii. The modular jack opening shall face out, down, or to either side, but not up. Where the opening faces out, the notch for the locking tab shall be on the bottom.
iv. Surface mount station jacks shall be secured to the wall with two or more screws.

E. Jack Installation - Flush Mount
i. Flush mount station jacks shall be installed in metal or plastic outlet boxes in the wall at 1.5 feet above floor.
ii. The boxes must be secured in the wall so that no movement occurs during installation use or during normal use.
iii. The jack and wall plate must each be secured to the box by metal screws.
iv. The jack shall be oriented so the locking tab is facing downward.
v. All in-wall faceplates will use angled modules.
1. GENERAL

A. Related sections:
 i. 27 00 00 – General Communications Requirements

B. Introduction
 i. This section specifies the wireless local area network (WLAN) standards for the University of Georgia for IEEE 802.11 Personal Access Wireless System (PAWS) wireless systems. These standards apply to the design and installation of all WLAN systems connected to the PAWS network which are installed on the campuses of the University of Georgia or any remote locations directly connected to the campus network.
 ii. Only hardware and software consistent with these standards shall be used in conjunction with the PAWS wireless network.
 iii. New plans for buildings and gathering areas shall consider the need for and use of wireless networking, similar to the planning done currently for wired networking (see section 27 00 00 – Communications).

C. Purpose
 i. A coordinated, centralized delivery of wireless networking services is essential to provide a successful wireless service. The goal is to provide a common user experience across campus, efficiently support users, protect network resources, and provide a quality service. This coordinated effort is led by the University of Georgia’s Enterprise Information Technology Services (EITS). To this end, EITS shall be solely responsible for the management of IEEE 802.11 and related access points at UGA.
 ii. Since EITS is responsible for management of the system, the Design Professional shall coordinate design reviews and approvals with EITS through the Project Manager. EITS will assist with oversight of the installation and will provide final configurations.
 iii. Wireless networks shall be installed only as extensions or additions to hard-wired networks and not as a replacement for cabled telephone, data, or CATV networks.

D. Frequency Use
 i. The 2.4 GHz radio frequency used by 802.11b and 802.11g is an unlicensed shared spectrum band. The 5 GHz radio frequency is another unlicensed shared spectrum which is used by 802.11a access points. 802.11n radios may use either one of these frequency ranges. In addition, there are only three non-overlapping channels within the 802.11b and 802.11g specifications.
 ii. Consequently, access points can interfere with each other and other communications devices or appliances if not administered or deployed properly. Microwave ovens and cordless phones are prominent examples.
 iii. EITS will manage the shared use of unlicensed radio frequencies for the campus community and has campus authority to resolve interference issues.

E. Responsibility And Enforcement
i. EITS is responsible for implementation of wireless technology, enforcing campus network standards, and has the authority to resolve frequency interference issues.

ii. All users connecting to the campus network will gain access through their UGA MyID which determines the identity of and authenticates the user.

F. Departmental Wireless Service
 i. Prior to purchase or deployment, EITS shall be consulted and will be responsible for approving and overseeing the design, planning, installation, and configuration.

G. Guidelines For Best Practice
 i. Wireless access points installed in public spaces, classrooms, etc. shall be securely mounted (and locked) or in places not easily accessible by the public.
 ii. Access points installed in private places shall be secured like other computing equipment.
 iii. Only connect access points to an Ethernet switch. Hubs shall not be used in wireless networking.
 iv. Use of 100 Mbps Ethernet is sufficient when connecting 802.11g and 802.11a access points to the campus network. Use of 1000 Mbps Ethernet when connecting 802.11n access points to the campus network is recommended.

H. Allowed Access Points
 i. Any Cisco LWAPP access points are compatible with the centralized PAWS system and shall be the only access points deployed on campus.
1. **GENERAL**

 A. **Related sections:**
 i. 27 41 00.01 – Audio-Visual Control System
 ii. 11 52 13 – Projection Screens

 B. The information in this section establishes a baseline for audio-visual system design that conforms to current campus audio-video standards maintained by The UGA Center for Teaching and Learning (CTL). The CTL continually evaluates products, services and systems design in order to provide cost effective, dependable and supportable technology for the UGA campus. The CTL maintains standard equipment list and diagrams for audio, video and control systems currently installed in CTL supported classrooms, conference rooms and other instructional spaces. It is the responsibility of the Design Professional and Contractor to request documentation for reference. Refer to section 27 41 00.01 – Audio-Visual Systems Requirements for additional control system specifications.

 C. Video conference and lighting systems shall operate independently from audio-video presentation systems, even when integrated together. Room lighting will be managed by a dedicated lighting controller. The primary controls for operating and configuring lighting scenes shall be part of the lighting control system. For convenience some lighting control may be accessible through the AV control interface. Refer to section 26 09 36 – Modular Dimming Controls and 26 51 00 Interior Lighting for additional details regarding lighting and lighting presets.
27 41 00.01
AUDIO-VISUAL CONTROL SYSTEM

1. GENERAL
 A. Related sections:
 i. 01 78 00 – Closeout Submittals
 ii. 26 09 36 – Modular Dimming Controls
 iii. 26 09 43.16 – Addressable Fixture Lighting Control
 iv. 27 00 00 – General Communications Requirements
 v. 27 41 00 – General Audio-Visual System Requirements
 B. This section, 27 41 00.01 – Audio-Visual Control System, is intended as a minimum
 requirement for single projector classrooms with standard source devices and room
 infrastructure. More complicated installations (multiple projectors, video conference,
 etc.) will require additional design coordination with the Project Manager, Design
 Professional, and the CTL. UGA will provide existing example touch panel files for these
 more complicated systems. Regardless of system complexity the basic operation will still
 be as described here.

2. PRODUCTS
 A. The UGA requires AMX hardware and software touch panel interfaces for classrooms,
 conference rooms, and other spaces with sophisticated audio-visual technology. This
 section describes the minimum functionality required to insure uniformity of UGA
 systems. An example touch panel layout is included at the end of this section, and this,
 along with an accompanying AMX touch panel layout file (AMX touchpanel filename:
 egUGA,CR4,Rev2_51_X700_dn.TP4) provide a general overview of how the final controls
 system shall function. A program viewer to read the TP4 file and the TP4 file are
 available for download at www.architects.uga.edu/standards. Every aspect of the
 required system is not specified as project specific modifications and final programming
 are ultimately unique to each project.
 B. UGA Athletic Association only – The UGA Athletic Association projects generally utilize
 Crestron hardware and software touch panel interfaces for classrooms, conference
 rooms, and other spaces with sophisticated audio-visual technology. Coordinate with
 the Project Manager.

3. EXECUTION
 A. Final versions of all source code and touch panel files will be provided by the Contractor
 as part of the Closeout Submittal. All support files, code modules, IR files, etc. required
 to compile and reload a room shall be provided (to be included in the complete closeout
 submittal package that is given to FMD).
 B. Most recent source code should also be stored on each control processor.
 C. Software will be written in such a way that equipment changes can be made without
 major rewrite. Use prebuilt AMX NetLinx or Duet modules wherever they are available
 for a specific projector or hardware device.
 D. All bi-directional controlled devices (Ethernet, RS232, AXLINK, ICSNET, etc.) should
 provide true feedback on touchpanel buttons:
 i. Projector ON, OFF and BLANK buttons feedback state will be based upon serial
 responses from projector (eg. Projector ON button will be unlit when projector
 is off. Button will flash when in transition warming up. Button will light when
projector is fully on). Periodic polling of projector status will regularly update this feedback.

ii. System ON button feedback state will be combination of projector state AND system power state (eg. System ON button will light and stay on only if sequencer has been turned on AND projector is fully on. Button will flash while projector is in transition AND sequencer is on. Button will be off if projector is on but sequencer is off.) Periodic polling of projector status will regularly update this feedback.

iii. System OFF button feedback state will be combination of projector state AND system power state (eg. Button will light and stay on only if sequencer has been turned off AND projector is fully off. Button will be off if projector is off but sequencer is still on). Periodic polling of projector status will regularly update this feedback.

iv. Projector Closed Caption button feedback will light to follow the status of the closed caption decoder reported by projector.

v. Document camera power ON, OFF, and LIGHT buttons will be based upon serial responses from document camera.

vi. Volume mute buttons will follow state of audio volume control hardware.

vii. Volume bargraph will smoothly track actual audio level.

E. Unidirectional controlled devices (DVD, and etc.) should not simulate feedback on touch panel, eg. the DVD transport buttons should have momentary feedback lighting only when the user presses the button.

F. Program source select buttons (eg. Desktop Computer, Laptop VGA, Laptop HDMI, Document, DVD, etc.) shall be located along left side of touchpanel layout:

i. Button press will route all the signals necessary to send that multimedia source to the projector and to the audio system.

ii. Feedback to source select buttons will remain lit indicating the most recently selected source (radio button style).

iii. Most recently selected source button will remain lit even when the system is turned off. This simplifies the user experience since the most commonly used input is already preselected.

iv. When hardware is turned on (projector, switcher, etc.) they will be re-initialized to route the most recently selected source.

G. If there is not sufficient space for all the source buttons to fit along the left side of the touchpanel, additional sub-select buttons may be added on transport pages:

i. The computer sub-select buttons on transport page (eg. Laptop VGA, Laptop HDMI, Windows PC or Mac Computer) will remain lit indicating the most recently selected source.

ii. The auxiliary sub-select buttons on transport page (eg. Lectern Aux In, AV Cart Feed, or Control Rm Feed) will remain lit indicating the most recently selected source.

iii. The most recently selected source should remain routed and lit even when the system power cycles. This simplifies the user experience if the most commonly used input stays preselected.

iv. Pressing one of the main source buttons (along left of touchpanel, eg. Laptop Select or Aux Select) will also reselect the previously selected sub-select
source. Routing signals as previously selected and lighting the sub-select button eg. [Laptop VGA or Laptop HDMI].

H. Alternate audio source buttons are provided along the bottom of some of the transport pages.
 i. These buttons will allow break-away audio routing such that the currently selected video source can be combined with audio from another source device (eg. Sheet music on doc cam and audio from CD player).
 ii. Some HDMI laptops provide audio embedded on HDMI. Some digital video devices don’t provide embed audio and must use the analog headphone jack (using 3.5mm audio cable which is provided for VGA laptops). The alternate audio buttons ([Laptop HDMI] and [Laptop 3.5mm]) allow the user to route the active audio regardless of the laptop’s default system settings.
 iii. Alternate audio source select buttons will be unlit unless pressed. Once pressed the alternate source buttons will light showing the most recently selected source (radio button style).
 iv. Pressing any of the main Program source buttons (along left of touchpanel) will disable the break-away routing and un-light all of the alternate audio source buttons.

I. Projector [ON] button press will start the following process:
 i. Un-blank the projector.
 ii. Turn projector on.
 iii. Turn on power sequencer to enable signal routing components for use.
 iv. Open “Power Up” pop-up page informing user of remaining time until projector will light (depending on projector may be 30-60 seconds for cold start and as long as 60-120 seconds for cool down and restart).
 v. Show progress by updating the projector progress bar graph on pop-up page. Also update the small progress bar on main page below system power buttons.
 vi. Flash projector [ON] button while the projector is warming up.
 vii. While the projector is warming up ignore button presses of the projector power [ON, OFF, BLANK] and system [ON, OFF] buttons. During this warm up time a repeat button press should open “Message Box” pop-up page telling the user to be patient.
 viii. Poll the projector until it responds indicating either:
 a. It cannot start normally and reports an error then open “Message Box” pop-up page and report error to user. Also update RMS.
 b. It doesn’t light within normal time (depends on projector model) then open “Message Box” pop-up page and report error to user. Also update RMS.
 c. It has started normally then stop flashing and light the [ON] button.
 ix. Initialize all of the signal routing hardware to display the source device which was most recently selected. Disable any break-away audio routing and un-light alternate audio source buttons.
 x. Poll projector after power-up and write lamp hours to variable text field 5 on projector tabbed pop-up page and update RMS.

J. Projector [OFF] button press will start the following process:
i. Open “Power Down” pop-up page with 20 second count-down bar graph. Querying user if they in fact want to turn off the projector.

ii. Immediately blank the projector image.

iii. If the user hits [CANCEL] then close pop-up page, un-blank the projector and do nothing else.

iv. If the user does nothing while the bar graph counts down to zero then assume that the user intends to turn off the projector (same as below).

v. If the user hits [TURN OFF] then do the following:
 a. Turn the projector off.
 b. The projector [OFF] button will flash indication that the projector is cooling down.
 c. Show progress by updating the projector progress bar graph on pop-up page. Also update the small progress bar on main page below system power buttons.
 d. While the projector is cooling ignore button presses of the projector power [ON, OFF, BLANK] and system [ON, OFF] buttons. During this cool down time a repeat button press should open pop-up “message box” telling the user to be patient.
 e. Poll the projector until it responds indicating it has turned off normally then light the [OFF] button.

K. Projector [BLANK] button can be used to temporarily hide the projected image. The projector will remain on but show only a black screen so that the image can be immediate re-displayed as required by the user. The [BLANK] button is a toggling function and will follow the blank status reported by the projector.

L. If user leaves projector “blanked” for longer than 60 minutes then start the following process:
 i. Touchpanel should beep once loudly.
 ii. Open “Power Down” pop-up page with 20 second count-down bar graph. Querying user if they in fact want to turn off the projector.
 iii. If the user hits [CANCEL] then close pop-up page and do nothing.
 iv. If the user does nothing while the bar graph counts down to zero then assume that the user intends to turn off the projector (same as below).
 v. If the user hits [TURN OFF] then do the following:
 a. Turn the projector off.
 b. Projector [OFF] button will flash indication that the projector is cooling down.
 c. Show progress by updating the projector progress bar graph on pop-up page. Also update the small progress bar on main page below system power buttons.
 d. While the projector is cooling ignore button presses of the projector power [ON, OFF, BLANK] and system [ON, OFF] buttons. During this cool down time a repeat button press should open pop-up “message box” pop-up page telling the user to be patient.
 e. Poll the projector until it responds indicating it has turned off normally then light the [OFF] button.

M. [System ON] button press will start the following process:
i. Un-blank the projector.
ii. Turn projector on.
iii. Turn on power sequencer to enable signal routing components for use.
iv. Open “Power Up” pop-up page informing user of remaining time until projector will light (depending on projector may be 30-60 seconds for cold start and as long as 60-120 seconds for cool down and restart).
v. Show progress by updating the projector progress bar graph on pop-up page. Also update the small progress bar on main page below system power buttons.
vi. Flash projector [ON] and [System ON] button while the projector is warming up.
vii. While the projector is warming up ignore button presses of the projector power [ON], [OFF], [BLANK] and [System ON] and [System OFF] buttons. During this warm up time a repeat button press should open pop-up “message box” telling the user to be patient.
viii. Poll the projector until it responds indicating either:
 a. It cannot start normally and reports an error then open “message box” and report error to user. Also update RMS.
 b. It doesn’t light within normal time (depends on projector model) then open “Message Box” pop-up page and report error to user. Also update RMS.
 c. It has started normally then stop flashing and light the projector [ON] and [System ON] buttons.
ix. Poll projector after power-up and write lamp hours to variable text 5 field on projector tabbed pop-up page and update RMS.
x. Projection screen down.
xi. Set lights to a scene appropriate for projection. Refer to section 26 09 36 – Modular Dimming Controls.
 xii. Initialize all of the signal routing hardware to display the source device which was most recently selected. Disable any break-away audio routing and un-light alternate audio source buttons.
 xiii. After the power up sequence is complete unmute the audio and return levels to where they were when last used.
N. [System OFF] button press will start the following process:
i. Open “Power Down” pop-up page with 20 second count-down bar graph. Querying user if they in fact want to turn off the system.
ii. Immediately blank the projector image.
iii. If the user hits [CANCEL] then close pop-up page, unblank the projector and do nothing else.
iv. If the user does nothing while the bar graph counts down to zero then assume that the user intends to turn off the system (same as below).
v. If the user hits [TURN OFF] then do the following:
 a. Turn the projector off.
 b. System [OFF button] will flash indication that the projector is cooling down.
 c. Show progress by updating the projector progress bar graph on pop-up page. Also update the small progress bar on main page below system power buttons.
d. While the projector is cooling down ignore button presses of the projector power ON, OFF, BLANK and System ON and System OFF buttons. During this cool down time a repeat button press should open pop-up "Message Box" pop-up page telling the user to be patient.

e. Poll the projector until it responds indicating it has turned off normally then light the OFF button.

f. Document camera turned off.

g. Mute all audio levels.

h. Projection screen up.

i. Lights set to normal on scene. Refer to section 26 09 36 – Modular Dimming Controls.

j. Window shades open.

k. Power sequencer turned off.

l. Do not turn off power to players with removable media (DVD, etc.) so that users will be able to remove media after system is off.

m. Do not turn off power to desktop computers and peripheral devices. Computer shutdown should be properly performed as controlled by the operating system.

n. Turn off other devices as appropriate.

vi. The projector’s built-in Closed Caption decoder will be used to provide onscreen captions for composite video sources. There is a toggling Closed Caption button on the projector control tabbed page and on each of the AUX IN, DVD, transport pages (button feedback lit based on projector response).

O. Audio controls consist of two sets of audio level control with up, down, mute and bar graph:

i. One set will simultaneously control both the right and left channels of the program audio. There will be no balance control on the touch panel.

ii. In rooms which have a dedicated voice amplification system a second set of controls will set the master audio output level of the microphone mix.

iii. Mute button will toggle mute on and off.

iv. Up button will cancel mute and raise volume.

v. Up button will turn on power sequencer to enable audio components for use (microphones, computer audio, etc.).

vi. Down button will lower volume but will not affect mute.

vii. Volume bar graph will smoothly follow the actual level of the volume device.

viii. Volume bar graph will go to zero when the volume mute is activated.

P. Lighting control will be provided by bi-directional communication interface (either RS232 or Ethernet) to an external dedicated lighting controller. The command language of this external lighting controller should include:

i. Command for recalling preset lighting scenes.

ii. Command for turning on a specific circuit (relay or dimmer).

iii. Command for turning off a specific circuit (relay or dimmer).

Q. Lighting scene buttons on the touchpanel will simply recall preset lighting scenes from the external lighting controller. These preset lighting scenes are setup independently using the keypad on the external lighting control system. The preset lighting scenes stored on the external controller will depend on the rooms use and size but might include:
i. Lights On – all normal room lights on.
ii. Projection Mode – lights near screen turned off, rest of room on.
iii. Cinema Mode – lights near screen turned off, rest of room dim.
iv. Whiteboard Mode – lights near white board all on, rest of room 50%.
v. Stage Mode – directional lights ON, front lighting on, rest of room 50%.
vi. Video Conference Mode – directional spotlights on, lights near screen off, rest of room on.
vii. Lights Off – all lights off.

R. A “more controls” lighting pop-up page will provide discrete control of each of the electrical lighting circuits. This will allow the user to fine tune the lighting beyond those choices provided in the presets above.

S. If electric window shades are controlled from the touchpanel then include up and down controls on the tabbed lighting controls pop-up page.

T. The document camera control page will function as follows:
 i. Power ON button will turn on document camera.
 ii. Top Light button will toggle upper lamp on and off.
 iii. Bottom Light button will toggle lower lamp on and off.
 iv. Power OFF button will turn off document camera.
 v. Zoom, iris and focus buttons will send start command on press and stop command on release.
 vi. RESET button will reset all setting to default (usually provided by resending power on command to document camera).

U. When the control processor is reset perform the following initialization:
 i. Trigger an RMS event recording the fact that the control processor has been reset.
 ii. Initialize RS232 connected hardware to simplify equipment replacement. Equipment swapped by technicians should not require manual configuration.
 iii. Initialize the switcher so that all VGA inputs will provide proper extended display identification data (EDID) information to the connected computers. The EDID table should be either:
 a. The exact EDID table as generated by the projector.
 b. Or an edited version of the projector EDID table (edited to limit resolution or other issues).
 c. Or an EDID table generated internally by the switcher with the maximum resolution matching the native resolution of the projector.
 iv. Initialize the switcher so that all HDMI inputs will provide proper EDID information to the connected computer. The EDID table should be either:
 a. The exact EDID table as generated by the projector.
 b. Or an edited version of the projector EDID table (edited to limit resolutions or to handle embedded audio or other issues).
 v. On each of the pages for Desktop and Laptop computers write the native resolution of the projectors. This provides a guide for the user if they need to manually set their computer to the correct resolution to match the projector.
 vi. Write AV help desk telephone number (as requested by End-User) to touchpanel variable text field 7.
vii. Write current lamp hours as reported by projector to touchpanel variable text field 5.

viii. Write maximum lamp hours to the projector pop-up page as a guide to user (maximum as defined in projector manual). This will be printed beside the current lamp hours, in variable text field 4, as a guide to the user.

V. When the touch panel wakes from sleep mode the “help_page” pop-up page should be displayed for 15 seconds and then closed to expose whatever pages had last been visible.

W. Periodically poll the projector for power state and error status. Update feedback on all touchpanel power buttons. Also update all fields linked to RMS for projector monitoring, error status and theft detection.

X. When the touchpanel wakes from sleep mode poll the projector for power state and update feedback on all touchpanel power buttons.

Y. Hidden button in upper left-hand corner of touch panel must be held for 3 seconds and then panel will switch to technician's page (refer to "Technician" page on sample touch panel file).

Z. Technician page should allow user to enter time of day for daily shutdown of the projector (default 23:59 midnight). At the designated shutdown time do the following:

i. Touchpanel should beep once loudly.

ii. Open “Power Down” pop-up page with 20 second count-down bar graph. Querying user if they in fact want to turn off the projector.

iii. Immediately blank the projector image.

iv. If the user hits [CANCEL] then close pop-up page, unblank the projector and do nothing else.

v. If the user hits [Turn Off] then turn off projector (same as below).

vi. If the user does not intervene to cancel the process then:

a. Turn the projector off.

b. Projector [OFF] and System [OFF] buttons will flash indication that the projector is cooling down.

c. Show progress by updating the projector progress bar graph on pop-up page. Also update the small progress bar on main page below system power buttons.

d. Poll the projector until it responds indicating it has turned off normally then light the [OFF] button.

AA. The control system software should include code to interface with UGA’s campus-wide “AMX RMS Enterprise” asset management system. This will allow remote control and monitoring as follows:

i. Report device status: System power state, Projector power state, bulb life, online status of system devices, etc.

ii. Report alarms: projector bulb error, projector filter error, projector offline (or stolen?), system offline, system rebooting, etc.

iii. Record usage statistic for each source device. Usage time will be based on a count of minutes during which a source is selected while projector is on.

iv. Maintain server database of all equipment serial numbers in real-time for inventory purposes.

v. Synchronize controller date and time with RMS server.

vi. Support RMS server scripting to remotely shut down and control equipment.
vii. Provide links to touchpanel web control pages (see below).

BB. A secure web control interface will be provided allowing access to all of the touch panel pages via a web browser. Both password protection and network security should protect this interface from being misused.
1. GENERAL – For UGA Athens Campus Only
 A. Related Sections:
 i. 08 71 00 Door Hardware
 B. All new access control systems are required to be part of the Andover Controls, Andover Continuum system (ACS). The UGA has sole source approval for this access control system and no substitutions are allowed.
 C. The access control system consists of card readers, intrusion detection sensors, and electric door hardware that are connected to an ACS field panel. The field panel is typically located in a building telecom room. The Andover panel is connected to an existing server over the UGA network. This typical requires a direction connection between the Andover field panel and a campus network switch.
 D. The ACS is interfaced with the campus Human Resources database. Students, faculty, and staff can obtain UGA identification cards that shall serve as an access control credential. These cards can have electronic information embedded and can be used as swipe cards or proximity field cards interfaced with the ACS.
 E. Server / Database Programming: The UGA contracts with a third party vendor to update, program, and maintain the access control software and server / database. To maintain security and accuracy, only this vendor is allowed access to the server / database for programming information related to new or renovated ACS.
 i. The ACS general building security system file server is located at the Boyd Graduate Studies Server Room.
 ii. The UGA current vendor is Operational Security Systems, Inc.
 iii. Any ACS database programming required as part of a new construction or modifications to an existing building with ACS, are required to be performed by the UGA current vendor.
 iv. Unless they are the UGA current vendor, the subcontractor that installs or modifies ACS in a building is not authorized to make the associated database programming changes.
 v. The Contractor shall include in their Bid or Cost of the Work the cost for the Contractor to retain the services of the UGA current vendor and for the UGA current vendor to perform all required server / database programming to make the new facility or renovation ACS fully operational. The Contractor must contract directly with the UGA current vendor. The Contractor is not allowed to have an ACS installation subcontractor contract with the UGA current vendor for the server / database programming.
 F. Any Work on a new or renovated ACS must be by a certified Andover Control system subcontractor that has been in business for at least three years.

2. PRODUCTS
 A. Magnetic locking systems are generally discouraged but may be aesthetically appropriate for some historic facilities.
 B. Magnetic locking systems that require a “Push to Exit” button are not allowed.
 C. Biometric-based access control devices may be required. Coordination with UGA is required.
1. **GENERAL**
 A. In general, a fire alarm riser diagram is a minimum requirement showing the type of smoke detectors in each floor and each room, locations of smoke detectors in the HVAC system, pull stations, horns, strobe lights and control panel(s). A performance specification shall accompany the riser diagram, describing the control panel make-up, features and construction, the zoning requirements, HVAC and elevator (if any) and door holders (if any) interlock descriptions.
 B. All fire alarm cable and/or fire alarm conduit shall be red in color. Fire alarm cable is not required to be in conduit unless specifically required by codes (for example, for a smoke evacuation system). Fire alarm cable not in a conduit shall be plenum rated.

2. **PRODUCTS**
 A. Acceptable manufactures are:
 i. Gamewell FCI (Fire Control Instruments)
 ii. Notifier
 iii. Silent Knight
1. GENERAL
 A. If the use of explosives to remove rock is approved by the Owner’s Representative, then
 the Contractor, a minimum of seven calendar days prior to commencing blasting
 activities shall provide the Owner’s Representative with the proposed blasting
 schedule. The Contractor shall also complete and submit to the Owner’s Representative
 a completed and executed ‘UGA Blasting Checklist:

UGA Blasting Checklist

This form is to be completed prior to all blasting activities

Project Name: __

Contractor Responsible: ___

Trade Contractor Responsible: __

Blasting Company Responsible: ___

Scheduled Date / Time of Blasting: __

Notifications (one week in advance):

1. **UGA & Local Police/Fire Department (For Athens-Clarke County call 706-542-2200)**

 Date/Time Notified_____________________ Contact Person ____________________________

2. **Local Utilities Department (For Athens-Clarke County call 706-613-3470 Admin)**

 Date/Time Notified____________________ Contact Person _____________________________

3. **Department Notifications**

 (Coordinate list and Contact with Owner’s Representative)

 Department Name: _______________________ Date/Time Notified________________________

Checklist

1. Blaster certification card on file ___

2. Pre-blast seismic survey completed prior to blast _____________________________________

 Surveying Company_______________________________ Survey Date ______________________

3. 6’ of earth cover confirmed on site ___

4. Blast mats in place __

5. Crushed stone used to fill boring holes __

6. Perimeter verified & staffed by blaster and WT with radio communication – 200’ from blast zone __

7. Verify no charges are within 10’ of existing utilities ________________________________

8. Immediately prior to blasting administer 3 quick sirens and 1 long siren with air horn ______

9. Seismograph in place and functional __

10. Post-blast seismograph reading _____________________ Time of Reading _________________

11. Blaster checks detonation tail cap to verify all explosives have discharged before anyone can re-enter site__

Trade Company Responsible Signature ________________________________ Date: __________

Contractor Signature __ Date: __________
1. **GENERAL**

 A. Related sections:
 i. 01 56 39 – Temporary Tree and Plant Protection
 ii. 32 90 00 – Planting
 iii. 32 91 00 – Planting Preparation
 iv. 32 91 13.16 – Mulching
 v. 32 92 00 – Turf and Grasses
 vi. 32 93 00 – Plants
 vii. 32 94 13 – Landscape Edging

2. **PRODUCTS**

3. **EXECUTION**

 A. **For UGA Athens Campus Only** – Content applies to new plant installations only:
 i. If pruning of roots is required of existing plants or trees, Contractor must contact Project Manager and arrange for FMD Grounds to review the conditions and advise.

 B. If pruning of roots is required for new plants, Contractor must seek approval from Design Professional prior to proceeding.

 C. Contractor shall remove only dead, dying, or broken branches as approved by FMD Grounds. Do not prune for shape.

 D. Contractor shall prune and thin trees, shrubs, and vines according to standard professional horticultural and arboricultural practices. Unless otherwise indicated by Design Professional, do not cut tree leaders; remove only injured, dying, or dead branches from trees and shrubs; and prune to retain natural character.

 E. Pruning of plant material shall be limited to fine pruning.

 F. Fine pruning is the removal of dead, diseased, injured, broken, rubbing, or crowded branches or twigs. Minor branches and branches that connect to the trunk may be fine pruned. Fine pruning should not result in large voids in the general outline or structure of the plant.

 G. Protruding branch stubs, left on the tree after pruning, is not acceptable. It will increase the possibility of decay and may result in the growth of undesirable shoots from the stub.

 H. The normal shape of the plant shall be left intact unless otherwise directed by the Design Professional. Additional pruning may be required on trees of special use or character.

 i. All pruning cuts on woody plants shall be made in accordance with standards set forth in the National Arborist Association's Pruning Standards for Shade Trees, Class I Fine Pruning. Improperly pruned shrubs and trees may result in rejection of plants by the Design Professional.

 ii. **Location of Pruning Cut**

 a. All pruning cuts by the Contractor shall be made sufficiently close to the parent limb so as not to have a protruding stub but shall be beyond the branch bark collar of the branch.

 b. Branch bark ridges and collars are areas or lines of bulging bark that usually are rougher and darker in color than surrounding bark. Branch
bark ridges occur above the lateral on the parent limb, while the collar occurs below the lateral. Studies show that the branch bark ridges and the collar form a strong barrier between the branch and the trunk against decay. This barrier shall not be violated by a pruning cut.

iii. Pruning Large Branches
 a. If a cut is required on a limb greater than 1 inch (1") diameter, the Contractor shall consult the Design Professional for prior approval and instructions.

iv. Treatment of Pruning Cuts
 a. Treatment of pruning cuts with wound dressings and/or paints is not necessary for proper wound repair and shall not be applied to any pruning cuts or wounds
1. GENERAL
 A. Related Sections:
 i. University of Georgia Planning Principles – Site Campus Planning Principles – Paving – Brick Work
 ii. University of Georgia Planning Principles – Site Campus Planning Principles – Paving – Porous Paving
 B. These products are typically used at building entrances, intersections, and as design features at plazas, walkways, and other major elements in the landscape.
 C. Porosity Levels
 i. Porosity level one pertains to Pine Hall Brick pavers for commercial use that have a low infiltration rate.
 ii. Porosity level two pertains to Pine Hall StormPave Brick pavers for commercial use that have a high infiltration rate.

2. PRODUCTS
 A. Regional Materials: Provide concrete pavers that have been manufactured within 500 miles of the Project site from aggregates and cement that have been extracted, harvested, recovered, as well as manufactured, within 500 miles of Project site. Provide documentation as requested by Project Manager.
 B. Light traffic paving brick
 i. Porosity Level: One
 a) Provide bricks without frogs or cores.
 b) Pine Hall Brick
 c) Thickness: 2-3/4" as per specifications
 d) Face size: 4x8 inches
 e) Color: Courtyard Red – Georgia Plant
 f) Note: Pavers shall be set over porous, compacted base
 ii. Porosity Level: Two
 a) Pine Hall Brick StormPave
 b) Thickness: 2-1/4” or 2-3/4” as per specifications
 c) Face size: 4x8 inches
 d) Color: Courtyard Red – Georgia Plant
 e) Note: StormPave Pavers shall be set over washed fractured open-graded stone in bedding course, washed fractured open-graded stone in base course, and cleaned fractured, open-graded stone in sub-base course; washed fractured and open graded aggregate placed in openings of pavers
 C. Paving brick with truncated domes:
 i. Porosity Level: One
 a) Provide bricks without frogs or cores.
 b) Pine Hall Brick
 c) Thickness: 2-1/4” as per specifications
 d) Face size: 4x8 inches
 e) Color: Courtyard Red – Georgia Plant
f) Note: In some instances, pavers shall be set over concrete sub-base.
Coordinate with Project Manager.

D. Heavy vehicular paving brick:
 i. Porosity Level: One
 a) Provide bricks without frogs or cores in surfaces exposed to view in the
 completed Work.
 b) Pine Hall Brick
 c) Thickness: 2-3/4”
 d) Face size: 4x8 inches
 e) Color: Courtyard Red – Georgia Plant
 f) Note: Pavers shall be set over concrete sub-base
 ii. Porosity Level: Two
 a) Pine Hall Brick StormPave
 b) Thickness: 2-1/4” or 2-3/4” as per specifications
 c) Face size: 4x8 inches
 d) Color: Courtyard Red – Georgia Plant
 e) Note: StormPave Pavers shall be set over washed fractured open-graded stone in bedding course, washed fractured open-graded stone in base course, and cleaned fractured, open-graded stone in sub-base course; washed fractured and open graded aggregate placed in openings of pavers

E. Brick shall be rated “not effloresced.”

3. EXECUTION
 A. Contractor shall mix pavers from several pallets or cubes, as they are placed, to produce uniform blend of color and textures.
 B. Contractor shall set pavers per manufacture’s recommendation for paver type, or minimally at a joint width of 1/16” and a maximum of 1/8”.
 C. Tolerances: Do not exceed 1/16” in 10 feet from level, or indicated slope, for finished surface of paving.
 D. Contractor shall repeat sand joint-filling process 30 days later to insure uniformity of joint infill.
1. **GENERAL**
 A. Related sections:
 i. University of Georgia Planning Principles – Site Campus Planning Principles – Paving – Sidewalks – University of Georgia Roadway
 B. Sidewalks shall be repaired in complete panels as originally scored. Cutting and replacement shall be at existing construction joints as agreed to with Project Manager.

2. **PRODUCTS**
 A. All sidewalks greater than 5’ wide will have vehicles drive on them and shall be a minimum of 6” thick unreinforced concrete, 3000 psi, with a minimum 6” graded aggregate base.

3. **EXECUTION**
 A. The Design Professional shall verify all scoring patterns with the Project Manager.
 B. Sidewalks shall have the following scoring pattern:
 i. Joint Pattern ‘A’ Example: Typical scoring pattern for sidewalk widths less than 8’.
 ii. Joint Pattern ‘B’ Example: Typical scoring pattern for sidewalk widths greater than 8’ and in prominent focal areas that generate heavy pedestrian traffic.
1. **GENERAL**

 A. Related sections:

 i. University of Georgia Planning Principles – Site Campus Planning Principles – Landscape – Fencing and Screening

 B. Where chain link fencing is required, either by code or for security purposes, black, vinyl-coated, chain link fence should be used. In regards to each situation, the height of the fence will be determined by the OUA.
1. GENERAL
 A. Timber retaining walls are not allowed.
1. **GENERAL**
 A. Related sections:
 i. University of Georgia Planning Principles – Site Campus Planning Principles –
 Gateways and Edges – Site Walls and Seat Walls
 B. Site retaining walls, depending on the height, are preferably constructed of granite
 rubble or granite faced granite rubble on a concrete wall. Coordinate with Project
 Manager to determine if retaining wall exposed surfaces shall be granite rubble or
 concrete.

2. **PRODUCTS**
 A. Regional Materials: Provide granite rubble that is quarried within 200 miles of the
 Project site. Make available documentation as requested by Project Manager.
 B. Basis of design: Grey Elberton Granite, Elberton, Georgia
 C. Type: Cubic-shaped granite stones to provide random pattern of stone sizes, but with all
 stone edges oriented orthogonally. Stone shall be weathered and broken face.
 D. Size: On the wall elevation, the minimum allowable individual piece of stone shall be
 4”x5”.

3. **EXECUTION**
 A. Contractor shall provide a mockup of at least 5’ wide by the height of the wall. An in
 place mock up is allowable as long as Contractor makes any required corrections.
 B. There shall only be vertical and horizontal mortar joints. Any stones that are oriented in
 the wall so that the edges are diagonal (not oriented horizontally and vertically) will be
 rejected.
 C. The mortar joint size shall be a minimum 1/2”. Mortar color to match stone.
 D. A granite coping cap shall be used on all seat walls. The width of the cap should have a
 minimum 1” overhang on all sides and a minimum thickness of 4”. All cap pieces shall
 span the entire width of the top of the wall and contain cubic-shaped granite stones to
 ensure random pattern of stone sizes.
 E. Any polished faces that are installed will be rejected.
 F. Weep holes that are formed with PVC shall be gray PVC (white PVC is not allowed). PVC
 shall be recessed 1” from face of wall.
1. **GENERAL**
 A. Related sections:
 B. Removable Bollards are generally used to restrict vehicular access on large driveways and sidewalks located on campus.
 C. Fixed Utilitarian Bollards are undecorated, simple, steel bollards that are used in utilitarian locations.

2. **PRODUCTS**
 A. Removable Bollard Basis of Design
 i. Manufacturer:
 a. Valley Iron and Steel Company
 Lumen Source
 Address: 1052 Peninsula Drive, Prosperity, SC 29127
 Office Phone: 888-214-5253
 Website: www.timberform.com
 ii. Model
 a. Equal to Cast Iron Bollard - #VI-BO-14/30"
 iii. Finish/Color
 a. Painted black
 iv. Special Features
 a. Removable mounting
 v. Notes
 a. Pipe to be galvanized prior to paint finish
1. **GENERAL**
 A. Related sections:
 i. 32 01 90.23 – Pruning
 ii. 32 91 00 – Planting Preparation
 iii. 32 91 13.16 – Mulching
 iv. 32 92 00 – Turf and Grasses
 v. 32 93 00 – Plants
 vi. 32 94 13 – Landscape Edging

2. **PRODUCTS**

3. **EXECUTION**
 A. Water
 i. Design Professional shall coordinate a water source with the Project Manager so that suitable water for the implementation and maintenance of the landscape plan shall be available on or near the work sites. If a new water source or extension of water source is included in the Contract Documents, the Contractor shall plan that the water source is functional prior to planting. The Contractor shall provide water trucks, hoses and other conveyances.

 ii. The root system of all plants shall be watered by the Contractor at such intervals as to keep the surrounding soil in the best condition for promotion of root and plant growth.

 B. Pesticides
 i. All pesticides used shall be labeled for specific use and for use in public areas.
 ii. Any Contractor applying pesticides must have a Commercial Contractor's Pesticide Applicator's License.
 iii. Contractor shall apply treatments as required to keep plant materials, planted areas, and soils free of pests and pathogens or disease. Use practices to minimize the use of pesticides and reduce hazards.
 iv. Contractor shall apply pesticides and other chemical products and biological control agents in accordance with authorities having jurisdiction and manufacturer's written recommendations. Coordinate applications with Project Manager's operations and others in proximity to the Work. Notify Project Manager before each application is performed.

 C. Maintenance
 i. The Contractor shall begin maintenance immediately after each plant is installed and shall continue until final acceptance of the work in total by the Design Professional. Maintenance shall include watering, cultivating, weeding, mulching, maintaining guy wires and stakes, pest control and general site cleanup.
 ii. Contractor shall provide maintenance by skilled employees of landscape Installer.
 iii. Maintenance Period for Trees and Shrubs: Maintain trees and shrubs from time of initial installation until Material Completion.
 iv. Maintenance Period for Ground Cover and Other Plants: Maintain trees and shrubs from time of initial installation Material Completion.
v. Maintain plantings by pruning, cultivating, watering, weeding, fertilizing, mulching, restoring planting saucers, resetting to proper grades or vertical position, and performing other operations as required to establish healthy, viable plantings. Spray or treat as required to keep trees and shrubs free of insects and disease.

D. Plant Damage:
 i. Planting areas and plants shall be protected by the Contractor at all times against trespassing and damages of any kind for the duration of the maintenance period. If any plants become damaged or injured, they shall be treated or replaced by the Contractor as directed by the Design Professional at no additional cost to the Owner. No work shall be done by the Contractor within, adjacent to, or over any plant or planting area without proper safeguards and protection of the plant material.
 ii. Contractor shall protect plants from damage due to landscape operations and operations of other contractors and trades. Maintain protection during installation and maintenance periods. Treat, repair, or replace damaged plantings.

E. Guarantee
 i. The Contractor shall guarantee, in writing, all materials assigned to workmanship for a period of one year from the date of Material Completion by the Design Professional.
 ii. Plant Replacement:
 a. During the installation, prior to material completion, any dead or dying plants shall be replaced as part of the Contract. Any delay in replacement must be approved by the Design Professional. During and at the end of standard one (1) year guarantee period, the Contractor shall replace, without cost to the Owner, and within 30 days of notification by the Project Manager all Contractor furnished plant materials which are dead or are not in a vigorous, thriving condition. Replacements shall closely match adjacent specimens of the same species and cultivar, and shall be subject selection in the field by the Design Professional prior to digging. Replacements shall be subject to all requirements previously stated in these specifications.
 iii. The Contractor shall make all necessary repairs to grades, lawns, plantings, and paving as required because of plant replacements. Such repairs shall be done at no extra cost to the Owner.
 iv. The acceptance of all replacement plants by the Design Professional at the end of the guarantee period terminates the Contractor's responsibility for such. In the event that a replacement plant dies, the Project Manager may elect a subsequent substitution.
 v. Replacement plants shall be guaranteed for a one (1) year period from the date of replacement, NOT from the date of original planting.
 iii. Soil Preparation/Excavation Repairs:
 a. During the 1-year guarantee period, the Contractor shall be responsible to correct any excessive settling or poor drainage areas directly attributable to Contractor's work.
1. **GENERAL**
 A. Related sections:
 i. 32 01 90.23 – Pruning
 ii. 32 91 00 – Planting Preparation
 iii. 32 91 13.16 – Mulching
 iv. 32 92 00 – Turf and Grasses
 v. 32 93 00 – Plants
 vi. 32 94 13 – Landscape Edging
 B. Prior to landscaping, the Contractor shall obtain soil samples from 3 separate and representative locations on site and send samples to:
 i. Trace Level Analysis Laboratory (TLA)
 2300 College Station Road
 Athens, GA 30602
 Phone: 706-542-9023
 Fax: 706-542-1474
 UGA Cooperative Extension Office
 soiltest@uga.edu
 A copy of the soil testing results shall be sent to the Design Professional 2 weeks prior to any application of fertilizer or lime.
 C. Drainage
 i. No plant shall be planted in soil that is obviously or predictably poorly drained. Any poorly-drained areas on the site shall be brought to the attention of the Design Professional before planting. Alterations shall be made by the Contractor to provide adequate drainage or changes will be made in the planting plan. Adjustment in final billing charges, if necessary, will be made to compensate Contractor for any additional work beyond fine grading to alleviate a drainage problem.
 D. Underground Obstructions
 a. When an obstruction exists in any proposed plant pit or bed, the Design Professional shall be notified immediately. If necessary, an alternate location shall be selected by the Contractor, with the approval of the Design Professional. If the location cannot be changed, the obstruction shall, if possible, be sufficiently removed to allow adequate root growth after the plant is properly planted.

2. **PRODUCTS**
 A. Compost – For UGA Athens Campus Only
 i. The UGA FMD Grounds Department develops its own compost for use on projects. Coordinate with the Project Manager to determine if appropriate for specific project. If available for use, there is not a project cost for the materials; however, the Contractor will be required to obtain the material at the compost site, which is located on Whitehall Road and transport the material to the Project site.
ii. The loading, hauling, and unloading of compost material shall be included in the Cost of the Work or Bid.

B. Topsoil
 i. Topsoil shall be friable and similar in physical characteristics to locally occurring topsoil. It shall be taken from a well-drained, arable site and shall not be delivered or moved in a muddy or frozen condition. It shall be reasonable free of subsoil. It shall contain no stones, clods, sticks, roots, or other extraneous matter greater than 1" in size and shall contain no materials toxic to plants.
 ii. Upon request of the Design Professional, the Contractor shall send representative samples of the topsoil to a recognized commercial or government agency to be tested for pH, fertility and bulk density. Copies of the results and recommendations shall be furnished to the Design Professional by the Contractor.

C. Fertilizer
 i. Phosphate is the only fertilizer material to be used in the preparation and planting of plant materials (other than turf). Phosphate is to be incorporated in all planting beds and individual planting holes as per soil test result.

D. Lime
 i. Lime shall meet the specifications of the Georgia Department of Agriculture and shall be of an agricultural grade. Lime shall be dolomitic in composition. Any hardened or caked lime shall be pulverized to its original condition before it is used.

3. EXECUTION
 A. Soil Preparation – Current Vegetated/Undisturbed Areas
 i. Contractor shall loosen subgrade of planting areas to a minimum depth of 12 inches. Remove stones larger than 1 inch in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner's property.
 a. Contractor shall apply fertilizer directly to subgrade before loosening.
 b. Contractor shall thoroughly blend planting soil off-site before spreading or spread topsoil, apply soil amendments and fertilizer on surface, and thoroughly blend planting soil.
 c. Contractor shall spread planting soil to a depth of 4 inches but not less than required to meet finish grades after natural settlement. Do not spread if planting soil or subgrade is frozen, muddy, or excessively wet.
 B. Soil Preparation – Previously Compacted, Paved, or Heavily Impervious Surfaces
 i. Areas outside the drip line of existing trees are to be excavated to a depth of eighteen inches (18"). Where equipment use is not possible, the area is to be dug by hand. Use of specific implements must be approved by the Design Professional. After disturbing the entire planting area (outside the drip line), the soil shall be removed and sent through a screening machine to separate out large-sized materials (greater than 1" in diameter) from usable soil. The Contractor shall be responsible for removing the sorted screened deleterious material from the UGA campus. After initial screening, additional topsoil (equal to the amount of screened deleterious material) shall be incorporated into the usable soil and re-screened. Screened soil should be replaced in a manner that will prevent compaction to the site. Light weight equipment on rubber tracks
should be used over large, heavy equipment. If the site has constrained access, back fill shall be done by hand.

a. Amendments

1) Compost shall be incorporated into all perennial beds areas. Additional need for compost shall be determined by Design Professional prior to soil preparation. After screening and soil replacement, two inches (2") of compost (if required), plus recommended lime and phosphorus, shall be applied and roto-tilled. Areas where slope is 3:1 or less shall be cross tilled to the previous till. In case of extreme slope, or other situations where tillage is not possible, Design Professional shall consider alternatives recommended by the Contractor.

C. Soil Preparation – When Inside Tree Drip Line

i. Because of the need to protect existing tree roots, areas within the existing tree drip line shall not be disturbed and/or roto-tilled. Inside the tree drip line, individual holes shall be dug for each plant or small mass of plants.

a. Amendments

1) Prior to planting and backfilling, recommended amounts of phosphate and lime shall be added to the soil excavated from the plant holes. After planting, an application of two inches (2") of compost, if needed, shall be spread over the entire planting area, before mulching.

2) The only exception to this method of planting and amending shall be in the case of ground covers planted from small (less than 1 pint) containers. In areas where groundcovers are planted in mass, the lime, phosphate, and compost shall be applied over the entire ground cover area prior to digging the planting holes.

D. Finish Grading

i. Contractor shall grade planting areas to a smooth, uniform surface plane with loose, uniformly fine texture. Roll and rake, remove ridges, and fill depressions to meet finish grades.

E. Dust

i. Contractor is responsible for controlling wind bourn dust and shall take preventative measures as required. If adjacent structures are covered in dust from the Project, the Contractor will be held responsible for complete cleaning of all surfaces at no additional cost to the Owner. This includes, but not limited to: roofs, walls, windows, etc.

F. Drip Line Definition

i. For purposes of defining type of soil preparation and planting methods, the term 'drip line' shall be used. The drip line shall be determined by measuring the distance of the furthest limb tip from the tree. This distance shall be the radius of drip line circle. Any variation of this circle must be approved by the Design Professional.

G. Landscape Topography

i. After soil preparation, but prior to planting, Design Professional shall approve topography. This includes any previous or newly specified mounds, drainage
areas, slopes, swales, edging treatments, or any other similar topographic features. Any adjustment to topography shall be made by the Contractor prior to planting.

H. Grooming and Shaping
 i. Soil Surface
 a. All rocks, clods, sticks, and other debris larger than 1 inch (1") shall be removed from the soil surface. Soil surface shall be raked and groomed to a smooth, even appearance. Unless specified on the landscape plan, the general slope and texture of the planted area should be returned to the approved condition before plant installation began.
1. **GENERAL**
 A. Related sections:
 i. 32 01 90.23 – Pruning
 ii. 32 90 00 – Planting
 iii. 32 91 00 – Planting Preparation
 iv. 32 92 00 – Turf and Grasses
 v. 32 93 00 – Plants
 vi. 32 94 13 – Landscape Edging

2. **PRODUCTS**
 A. Pine straw shall be used for mulch.
 i. All pine straw shall be clean, fresh, and free of branches and foreign matter.
 ii. The mulching material shall be pine straw, applied four inches (4") to six inches (6") thick to achieve a minimum settling depth of three inches (3").

3. **EXECUTION**
 A. Contractor shall mulch all trees and shrubs immediately after planting, **NOT** at the end of the entire planting project.
 B. The contractor shall mulch the planting holes and staked areas of individual trees shall be mulched, while the entire planting areas of shrub and ground cover beds shall be uniformly mulched. No soil, rocks, clods, or drip irrigation lines shall be visible through the mulch.
 C. Trees planted in turf areas shall have a circular mulch ring with a four-foot radius from the trunk of the tree. All areas that are not turf or hardscape shall be mulched, unless otherwise specified.
1. GENERAL
 A. Related sections:
 i. 32 01 90.23 – Pruning
 ii. 32 90 00 – Planting
 iii. 32 91 00 – Planting Preparation
 iv. 32 91 13.16 – Mulching
 v. 32 93 00 – Plants
 vi. 32 94 13 – Landscape Edging

2. PRODUCTS
 A. All sod shall be TIF 419.

3. EXECUTION
 A. Grading
 i. Newly Graded Subgrades: Contractor shall loosen subgrade to a minimum depth of 6 inches. Remove stones larger than 1 inch in any dimension and sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner’s property.
 a. Contractor shall apply fertilizer directly to subgrade before loosening.
 b. Contractor shall thoroughly blend planting soil off-site before spreading or spread topsoil, apply soil amendments and fertilizer on surface, and thoroughly blend planting soil.
 c. Contractor shall spread planting soil to a depth of 4 inches but not less than required to meet finish grades after light rolling and natural settlement. Do not spread if planting soil or subgrade is frozen, muddy, or excessively wet.
 1) Reduce elevation of planting soil to allow for soil thickness of sod.
 ii. Unchanged Subgrades: If turf is to be planted in areas unaltered or undisturbed by excavating, grading, or surface-soil stripping operations, prepare surface soil as follows:
 a. Contractor shall remove existing grass, vegetation, and turf. Do not mix into surface soil.
 b. Contractor shall loosen surface soil to a depth of at least 6 inches. Apply soil amendments and fertilizers according to planting soil mix proportions and mix thoroughly into top 4 inches of soil. Till the soil to a homogeneous mixture of fine texture.
 1) Contractor shall apply fertilizer directly to surface soil before loosening.
 c. Contractor shall remove stones larger than 1 inch in any dimension and sticks, trash, and other extraneous matter.
 d. Contractor shall legally dispose of waste material, including grass, vegetation, and turf, off Owner’s property.
 iii. Finish Grading: Contractor shall grade planting areas to a smooth, uniform surface plane with loose, uniformly fine texture. Grade to within plus or minus 1/2 inch of finish elevation. Roll and rake, remove ridges, and fill depressions to
meet finish grades. Limit finish grading to areas that can be planted in the immediate future.

iv. Moisten prepared area before planting if soil is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.

v. Before planting, Contractor shall obtain Design Professional and/or Project Manager acceptance of finish grading; restore planting areas if eroded or otherwise disturbed after finish grading.

B. Sodding

i. Contractor shall lay sod within 24 hours of harvesting. Do not lay sod if dormant or if ground is frozen or muddy.

ii. Lay sod to form a solid mass with tightly fitted joints. Butt ends and sides of sod; do not stretch or overlap. Stagger sod strips or pads to offset joints in adjacent courses. Avoid damage to subgrade or sod during installation. Tamp and roll lightly to ensure contact with subgrade, eliminate air pockets, and form a smooth surface. Work sifted soil or fine sand into minor cracks between pieces of sod; remove excess to avoid smothering sod and adjacent grass.

iii. Lay sod across angle of slopes exceeding 1:3.

iv. Contractor shall anchor sod on slopes exceeding 1:6 with wood pegs spaced as recommended by sod manufacturer but not less than 2 anchors per sod strip to prevent slippage.

v. Contractor shall saturate sod with fine water spray within two hours of planting. During first week after planting, water daily or more frequently as necessary to maintain moist soil to a minimum depth of 1-1/2 inches below sod.

C. Turf Maintenance

i. Contractor shall maintain and establish turf by watering, fertilizing, weeding, mowing, trimming, replanting, and performing other operations as required to establish healthy, viable turf. Roll, regrade, and replant bare or eroded areas and remulch to produce a uniformly smooth turf. Provide materials and installation the same as those used in the original installation.

ii. Contractor shall mow turf as soon as top growth is tall enough to cut. Repeat mowing to maintain height appropriate for species without cutting more than 1/3 of grass height. Remove no more than 1/3 of grass-leaf growth in initial or subsequent mowings.

iii. Contractor shall apply pesticides and other chemical products and biological control agents in accordance with authorities having jurisdiction and manufacturer’s written recommendations. Coordinate applications with Owner’s operations and others in proximity to the work. Notify Project Manager before each application is performed.

D. Satisfactory Turf installations shall meet the following criteria as determined by Design Professional:

i. Satisfactory Seeded Turf: At end of maintenance period, a healthy, uniform, close stand of grass has been established, free of weeds and surface irregularities, with coverage exceeding 90 percent over any 10 sq. ft. and bare spots not exceeding 5 by 5 inches.

ii. Satisfactory Sodded Turf: At end of maintenance period, a healthy, well-rooted, even-colored, viable turf has been established, free of weeds, open joints, bare areas, and surface irregularities.
iii. Use specified materials to reestablish turf that does not comply with requirements and continue maintenance until turf is satisfactory.
1. GENERAL
 A. Related sections:
 i. 32 01 90.23 – Pruning
 ii. 32 91 00 – Planting Preparation
 iii. 32 91 13.16 – Mulching
 iv. 32 92 00 – Turf and Grasses
 v. 32 93 00 – Plants
 vi. 32 94 13 – Landscape Edging
 B. Specific plants that require seasonal planting will be indicated on the planting plan. Actual plant installation shall occur only during periods when weather and soil conditions are favorable. The Design Professional shall be notified at least 48 hours before planting begins.
 C. Planting Locations
 i. The Contractor shall stake the location of planting sites and the Design Professional will approve the location prior to beginning any planting. The time required between staking and planting will be determined at the pre-construction conference.
 D. Plant Placement
 i. Each plant shall be placed in a straight, upright, and centered position in its planting hole or as specified. Balled and burlapped and container-grown plants shall be handled only by their roots, balls and containers.
 ii. Plants may settle after transplanting and water will collect around the trunks. In all but very well-drained soils, plants will not establish and thrive if the tops of their root balls are below the level of the surrounding soil.
 iii. Some plants should be planted slightly higher than they were originally growing to allow for this settling of the backfill or soil conditions. Consult with Design Professional for recommendations. In no case, should the top portion of the root ball be exposed above surrounding soil line. Any special directions for planting in poorly drained soils or other specific plant needs will be indicated on the planting plan.
 iv. Balled-and-Burlapped plants shall have all synthetic materials removed from the root ball, trunk or crown as they will not decompose and will cause damage to the plant.
 v. All synthetic straps, bands and twine shall be removed from one half (½) to one third (1/3) of the top of the root ball and all ropes or wires shall be removed from the plant’s trunk or crown. Burlap shall be left intact around the edge of the root ball, but shall not be left on the upper portion of the ball or left exposed above the soil surface.

2. PRODUCTS
 A. Plant Selection: The Contractor shall use only plants that are nursery grown, unless otherwise specified and approved by the Design Professional. All plants shall be in accordance with American Association of Nurserymen’s (AAN) of American Standard for Nursery Stock, latest edition. All plants shall be typical of their species or cultivar and
have a normal growth habit. They shall be healthy, vigorous, well-branched, and densely foliated when in leaf. Plants shall be free of disease, nematode, and insect pests, including insect eggs and larvae. They shall have a healthy, well-developed root system.

B. Substitutions: All substitutions in genus, species, cultivar or size must be made by the Contractor and approved by the Design Professional. Plants larger than specified may be substituted on approval of the Design Professional, but such plants shall not increase the contract price. If the use of larger plants is approved, the spread of roots or ball of earth shall be increased in proportion to the size of the plant. If larger sizes are used, any future replacements shall match the size installed.

3. EXECUTION

A. Mulch backfilled surfaces of planting areas and other areas indicated.
 i. Trees and Tree-like Shrubs in Turf Areas: Apply organic mulch ring of 4 inch average thickness, with 36-inch radius around trunks or stems. Do not place mulch within 3 inches of trunks or stems.
 ii. Organic Mulch in Planting Areas: Apply 3-inch (75-mm) average thickness of mulch over whole surface of planting area, and finish level with adjacent finish grades. Do not place mulch within 3 inches (75 mm) of trunks or stems.

B. Contractor shall set out and space ground cover and plants other than trees, shrubs, and vines 18 inches apart or as indicated in even rows with triangular spacing.

C. Use planting soil for backfill.

D. Contractor shall dig holes large enough to allow spreading of roots.

E. Contractor shall water thoroughly after planting, taking care not to cover plant crowns with wet soil.

F. Protect plants from hot sun and wind; remove protection if plants show evidence of recovery from transplanting shock.

G. Deliver plants after preparations for planting have been completed, and install immediately. If planting is delayed more than six hours after delivery, set plants and trees in their appropriate aspect (sun, filtered sun, or shade), protect from weather and mechanical damage, and keep roots moist.

H. Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace mulch materials damaged or lost in areas of subsidence.

I. Plant Digging
 i. Balled and Burlapped
 a. Balled and Burlapped plants shall be dug with a firm, natural ball of earth around the roots, conforming to AAN's most current American Standards for Nursery Stock. Root balls shall be covered with natural burlap (treated or untreated) and secured with pinning nails, twine, wire, and wire baskets, or a combination of these materials. Synthetic wrapping materials shall not be used around the root ball.
 b. Container-Grown Plants: Container-grown plants shall be healthy, vigorous and well-rooted in their containers. They shall have fibrous root systems sufficiently developed so that the root mass will retain its shape when removed from the container. No plant shall be loose in its container, nor shall it be severely root bound. Plants shall be watered prior to shipment and if transported in open vehicles shall be covered with shade cloth or tarp to prevent wind burn.
J. Storage
 i. Ball and burlapped plants which cannot be planted immediately upon
delivery to the site shall be placed on the ground (not on a paved surface) with
the roots balls well protected from drying by covering them with a moisture
holding material, such as sawdust, bark, or topsoil. These plants shall be
provided adequate moisture and protection from temperature extremes and
strong winds. All trunks shall be covered with adequate shade cloth or trunk
wrapping to prevent exposure to sun if not planted within 24 hours
 ii. Container grown plants shall be brought to the planting site as close to the
installation date as possible. They shall be provided adequate protection from
injury, strong winds and exposure to desiccation and temperature extremes. All
plants shall be watered thoroughly in their containers prior to installation. It is
the responsibility of the contractor to ensure the plants are adequately watered
during this period.

K. Stakes
 i. Stakes shall be uniform pieces of 2" x 2" treated pine of a length to adequately
support the tree and be securely anchored into the ground a minimum of 2 feet
(2').

L. Guying Material and Straps
 i. Guy wire shall be annealed galvanized, sixteen (16) gauge double strand. Tree
ties or straps shall be made of reinforced webbing with grommets for attaching
guy wire or hose for trees or shrubs larger than three inch (3") caliper. Hose
material shall be a minimum of one half inch (½") diameter, heavy duty and
reinforced. Materials such as eye bolts, lag screws, and textile fabrics shall not
be used as tree ties.

M. Planting Holes – Outside Tree Drip Line
 i. In beds outside the drip line, where the soil has been thoroughly tilled, screened
and prepared, both balled and burlapped and container-grown plants shall only
require a planting hole with vertical sides and a diameter slightly greater than
the root ball of the transplant.

N. Plant Holes – Inside Tree Drip Line
 i. The planting hole shall only be dug deep enough to allow the installation of the
plant at the same depth as it was originally growing in the field or in its
container or as otherwise detailed on the planting plan. The width of the hole
shall be determined by the type and size of plant being installed.
 a. Bare Root:
 1) Bare root plants shall have holes excavated with vertical side
 walls greater in diameter than the root spread of the transplant
 and to a depth of twelve inches (12").
 b. Ball and Burlapped & Container Grown:
 1) Ball and burlapped and container grown plants shall have
 holes excavated to a depth equal to the root ball and a width
twice the width of the root ball. For larger rootballs, the hole
does not have to be excavated the entire depth at twice the
width. A modified hole shall be a minimum twice the rootball
width, to a depth of twelve inches (12"), with vertical side walls.
For the remainder hole depth, the hole shall be at least four inches (4") greater in diameter than the root ball.

c. Mechanically transplanted trees:
 1) Trees dug and transplanted with a mechanical tree spade (on site) shall be placed in a planting hole dug by a mechanical tree spade of the same size.

d. Ground covers:
 1) Individual holes shall be made by hand, or with an auger.
 2) If holes are dug using an auger, each planting hole shall be made by auguring 3 adjoining holes to form a larger hole. Groundcovers shall be planted into these holes and backfilled with the soil and compost.

O. Backfill
 i. Unless otherwise specified on the landscape plan, all plants shall be backfilled with soil excavated from the planting hole. Plants installed in raised beds shall be backfilled with soil taken from those amended beds.
 ii. The backfill shall be placed in the planting hole in six- to eight-inch (6-8") layers, and firmed to remove air pockets, until the hole is filled. No more than one half inch (½") of backfill or soil shall be applied to the top surface of the root ball.
 iii. All plants must be thoroughly watered in individually, to insure proper settlement of the backfill. This shall be accomplished by applying water at the BASE of the plant for a period of time long enough to saturate the soil to a depth of the root ball.

P. Grooming and Shaping
 i. Plant Saucers
 a. The level of soil around the plant shall be even with the slope and the top of the root ball, unless otherwise specified. Shallow saucers shall be formed around all large shrubs and trees NOT within areas to receive watering from an irrigation system. In irrigated areas, saucers shall be formed around shrubs taller than 6 feet and all trees. When used, saucers shall be formed by mounding soil two to four inches high around the perimeter of the planting hole. Saucers should be capable of holding water around each plant. On slopes, a saucer shall be formed on the lower side of the slope.

Q. Staking and Guying
 i. Staking or guying plants shall be dependent upon the plant's type, size, root system, and location. Stakes and guy wires shall be used only when necessary to protect, support, or anchor the transplant. Any device that would wound the trunk of the plant shall not be used. Staking and guying shall be completed immediately after planting. Plants shall stand plumb after staking in accordance with the landscape plan.
 ii. Tree ties shall be used to support and protect tree trunks or limbs which are guyed with wire. Tree ties should contact the trunk or limb with a broad, smooth surface and be elastic enough to minimize abrasion.
 a. Support Staking and Guying:
 1) This method of staking shall be used for all small trees greater than five feet (5') in height and/or under three inch (3") caliper
and large shrubs greater than six feet (6') in height. Two 2"x 2" treated wooden stakes shall be driven into the soil, within the mulched area but outside the planting hole, to a depth to adequately secure the stakes. The plant's trunk shall be attached to the support stakes using wire and straps in such a manner that the trunk will not be damaged or girdled and yet allow natural movement of the plant. The exact height of the stakes and support wire will vary with each plant, but should attach to the tree between one third (1/3) to one half (½) the height of the tree.

b. Anchor Staking and Guying:
 1) This method of staking shall be used for all trees (and shrubs) greater than three inch (3") caliper or trees planted in bare root condition. Anchor stakes are used to hold the roots or the root ball of the tree or shrub in the soil until the roots can grow and adequately support the plant.
 2) Three treated, wooden stakes 2"x 2"x 36" (or longer), shall be driven at least two feet (2') into the soil leaving six inches (6") exposed. The stakes shall be placed within the mulched area but outside the planting hole.
 3) The trunk shall be attached to the stake with specified wire in such a manner that the trunk will not be damaged or girdled and so limited natural movement of the plant can occur. The point of attachment shall be located at the lowest set of main scaffold limbs, unless otherwise indicated on landscape plans or by Design Professional. Wire shall be secured to the tree using either webbing straps or garden hose. Safety flags shall be used to mark the guy wires.

c. Protective Staking
 1) Protective staking shall be used as required. Protective stakes may be required to prevent or reduce damage caused by mowing, pedestrian traffic, or vandals. Examples include: individual plants installed in a small isolated bed by themselves or when shrubs or trees are planted on corners near high pedestrian traffic.
 2) Three 2" x 2" x 4' (or taller) treated wood stakes shall be driven into the soil outside the planting hole of the plant, but inside the mulch ring, to a depth adequately securing the stakes. The placement of stakes shall form a triangle around the plant. Stakes and webbing may be required to guide traffic around tight corners, etc.
1. GENERAL
 A. Related sections:
 i. 32 01 90.23 – Pruning
 ii. 32 90 00 – Planting
 iii. 32 91 00 – Planting Preparation
 iv. 32 91 13.16 – Mulching
 v. 32 92 00 – Turf and Grasses
 vi. 32 93 00 – Plants
 vii. 32 94 13 – Landscape Edging

2. PRODUCTS
 A. Equal to Col-Met flexible steel bed edging is to be used wherever bed edging is specified.
 i. Height: 4” Tall
 ii. Color: Black

3. EXECUTION
 A. The Contractor shall be responsible for loading, hauling, and installing bed edging.
 B. Steel edging shall be installed along all bed edges separating shrub beds from turf, unless indicated otherwise on landscape plan.
 C. Steel edging shall be installed with one half (½) vertical side in ground and one half (½) vertical side above ground.
 D. Steel edging shall follow bed lines in a smooth, even flowing manner.
 E. Steel edging shall be cut at an angle at every location where edging intersects with curbs, sidewalks, or other masonry surfaces. Angle shall be cut from end, from two inches (2") vertically (midway) to the top vertical edge, six inches (6") from the end touching the masonry, etc.
 F. 3”-3.5” of edging shall be below grade when installed.
1. **GENERAL**

A. Related sections:
 i. 23 05 19 – Meters and Gages for HVAC Piping
 ii. 33 10 00 - Water Utilities – Public Water Distribution System
 iii. 33 12 13.13 – Water Supply Backflow Preventer Assemblies
 iv. 33 30 00 – Sanitary Sewerage Utilities – Sanitary Sewer Collection Systems
 v. 33 60 00 – Hydronic and Steam Energy Utilities
 vi. 33 71 19 – Electrical Underground Ducts & Manholes
 vii. 33 80 00 – Communications Utilities

B. Utility Owner’s at The UGA, Athens, Georgia Campus

 Water ACC Public Utilities or University of Georgia
 Sanitary Sewer ACC Public Utilities or University of Georgia
 Septic Sanitary System University of Georgia
 Storm Sewer University of Georgia
 Electric Power Georgia Power Company or University of Georgia
 Natural Gas Atlanta Gas Light Company or University of Georgia
 Steam University of Georgia
 Chilled Water University of Georgia
 Data Communications University of Georgia Enterprise Information Technology Services (EITS)
 Voice Communications AT&T or EITS
 Television Cable Charter Communications or EITS
 Fire Alarm Systems University of Georgia (maintenance contract with Fire Protection Associates)
 Security & Access Systems University of Georgia Public Safety Division
 Irrigation University of Georgia Facilities Management Division Grounds Department

C. Locator Notification

 i. The Contractor’s attention is directed to the fact that there are active utilities within the work area. Utilities are owned by the University of Georgia and other public utility companies. 72 hours in advance of digging, the Contractor shall contact:
 a. Public Underground Utility Locator Service at 1-800-282-7411 or 811 as required by Georgia State Law.
 b. For projects on the University of Georgia, Athens, Georgia campus, University of Georgia Facilities Management Division Grounds Department at (706) 542-7450 to locate irrigation lines.

 ii. The Contractor shall be liable for all repair costs if he fails to properly notify utility locators as described above. Any utility line damaged by the Contractor which was marked or identified by the Owner of the utility shall be repaired by the Contractor at his own expense. In the event the Owner of the utility elects
to make the repairs with his own work force, the Contractor shall reimburse the Owner of the utility for the cost of repairs.

D. Utilities Furnished
 i. Certain utilities, if owned and operated by the University of Georgia, required for work to be performed under this contract shall be furnished by the Owner at the Contractor’s expense. However, these utilities shall be furnished at the point and in the capacity that they are available adjacent to the construction site. Any utility of different pressure, capacity, type, etc. required by the Contractor that is not available within the area shall be arranged for by the Construction Manager at his own expense. Any expense involved to the Contractor in extending the utilities from the present location to the point required shall be at the Contractor’s expense and included in the Cost of the Work.

E. Modifications
 i. The Contractor shall adjust all existing and new utility structures (manholes, valve boxes, etc.) to meet new grades as required to complete this project at part of the Cost of the Work.

F. Utilities
 i. Accessible isolation valves, identified as to function, shall be provided at new taps from existing utilities.
 ii. Provide detectable aluminum foil plastic backed tape or detectable magnetic plastic tape manufactured specifically for warning and identification of buried utility.
 iii. Existing services and equipment shall be specified to be removed from site and not be abandoned in place except with the written approval of FMD.
1. **GENERAL**
 A. Any work on the public water distribution system must be approved and inspected by applicable local government offices and must be performed in accordance with the local governmental regulations. In Athens-Clarke County, most water mains, fire hydrants and water meters are under the jurisdiction of The Unified Government of Athens-Clarke County (ACC). All connections to the ACC water distribution system shall be approved and inspected by ACC Public Utilities. The current version of the construction specifications published by ACC Public Utilities (available at www.athensclarkecounty.com) regarding water main construction are incorporated into this contract. The Contractor subcontractor constructing the water distribution system improvements described in this contract shall be on the ACC list of approved contractors. Final approval, acceptance and payment for work completed on the water distribution system will be contingent on acceptance of the improvements by the ACC Public Utilities. All costs associated with compliance of the water main construction requirements shall be included in the Cost of the Work or Base Bid.
1. **GENERAL**

 A. Any work on backflow preventers must be approved and inspected by applicable local government offices and must be performed in accordance with the local governmental regulations. In Athens-Clarke County the Double-Check Backflow Preventer for the fire main connection and Reduced Pressure Zone (RPZ) Backflow Preventers for the domestic water connections are under the jurisdiction of The Unified Government of Athens-Clarke County (ACC). The current version of the construction specifications published by ACC (available at www.athensclarkecounty.com) regarding cross-connection / back flow are incorporated into the standards. All costs associated with compliance of the cross-connection / back flow construction requirements shall be included in the Cost of the Work or Base Bid.

 B. Building backflow preventers shall be designed and installed so that two backflow preventers are in parallel. This will allow for annual maintenance to occur without disruption of service.
33 30 00
SANITARY SEWERAGE UTILITIES – SANITARY SEWER COLLECTION SYSTEM

1. GENERAL

A. Any work on the public sanitary sewer collection system must be approved and inspected by applicable local government offices and must be performed in accordance with the local governmental regulations. In Athens-Clarke County, most sanitary sewer mains and man-holes are under the jurisdiction of The Unified Government of Athens-Clarke County (ACC). All connections to the ACC wastewater system shall be approved and inspected by ACC Public Utilities. The current version of the construction specifications published by ACC Public Utilities (available at www.athensclarkecounty.com) regarding wastewater system construction are incorporated into the standards. For work within ACC, the Contractor subcontractor constructing the wastewater system improvements described in the standards shall be on the ACC list of approved contractors. Final approval, acceptance and payment for work completed on the water distribution system will be contingent on acceptance of the improvements by the ACC Public Utilities. All costs associated with compliance of the water main construction requirements shall be included in the Cost of the Work or Base Bid.

B. Prior to Material Completion, the Contractor shall camera all new sanitary sewer pipe installed exterior to the building perimeter, and 10’ beyond the connection point with existing pipe. The Contractor shall provide the Design Professional and Project Manager with an electronic copy of the video footage for review. Cost of videoing the system shall be included in the Cost of the Work or Base Bid.
1. **GENERAL**
 A. Related Sections:
 i. 23 00 00 General Mechanical Requirements
 ii. 23 21 13 Hydronic Piping
 iii. 23 22 13 Steam & Condensate Heating Piping
 iv. 33 00 00 General Utilities Requirements
 B. Design Professional shall specify fiber reinforced polymer composite, traffic rated, secure locking lids for heavy electrical manhole covers. New cast iron covers will not be accepted.

2. **PRODUCTS**
 A. Steam manhole cover equal to McGard, LLC FiberShield Manhole with lock
 i. Fiber reinforced polymer
 ii. H-20 and AASHTO HS-25 load rating for 80,000 lb.
 iii. Self-containing locking system that provides cover to frame retention and security from unauthorized entry and uses a multipurpose T-Key.
 iv. Egress handle:
 a. Provide a manual pull handle for use by individual inside the manhole a means to exit
 b. All plastic construction to resist corrosion, parts molded in high visibility yellow
 c. Pulling the handle will latch open one of the cartridge assemblies and allow the person to push the cover out of the frame and then exit.
 v. Ultraviolet radiation will not affect long term performance of composite manhole cover.
 vi. Logo Plate: Stainless Steel plate 1/8” thick that says “STEAM”.

1. GENERAL
 A. Related Sections:
 i. 26 00 00 General Electrical Requirements
 ii. 33 00 00 General Utilities Requirements
 B. Design Professional shall specify fiber reinforced polymer composite, traffic rated, secure locking lids for heavy electrical manhole covers. New cast iron covers will not be accepted.

2. PRODUCTS
 A. Electrical manhole cover equal to McGard, LLC FiberShield Manhole with lock
 i. H-20 and AASHTO HS-25 load rating for 80,000 lb.
 ii. Self-containing locking system that provides cover to frame retention and security from unauthorized entry and uses a multipurpose T-Key.
 iii. Fiber reinforced polymer
 iv. Egress handle:
 a. Provide a manual pull handle for use by individual inside the manhole a means to exit
 b. All plastic construction to resist corrosion, parts molded in high visibility yellow
 c. Pulling the handle will latch open one of the cartridge assemblies and allow the person to push the cover out of the frame and then exit.
 v. Ultraviolet radiation will not affect long term performance of composite manhole cover.
 vi. Logo Plate: Stainless Steel plate 1/8" thick that as appropriate says “ELECTRIC” or “HIGH VOLTAGE”.
1. **GENERAL**
 A. Refer to related sections:
 i. 27 00 00 – General Communications Requirements
 ii. 27 05 43 – Underground Ducts & Raceways for Communications