SITE CAMPUS PLANNING PRINCIPLES

INTRODUCTION

The UGA Site Campus Planning Principles defines essential features unique to the UGA campus. These design standards contribute to pedestrian safety, way finding, campus iconography, and sense of place. They are important identifying characteristics of the 605-acre UGA campus. The standards are made available here to design professionals engaged on the UGA campus as a way to maximize efficiency and streamline parts of the design process.

The UGA Site Campus Planning Principles defines essential features that not only instruct architects, landscape architects, engineers, and other design professionals of the aesthetic make up of the University of Georgia campus, but also formulates the design criteria for future development, which essentially brings forth continuity and respect for elements that are deemed appropriate.

This section is intended as a guideline of pertinent design principles. Specific construction detail requirements may be found in Standards.
GATEWAYS AND EDGES

Stone entry gates, masonry piers, decorative iron fences, and lush landscape plantings are all elements the designer can use to define campus edges and property lines. They serve to visually and physically identify the campus boundaries. The campus gateways can be categorized in a hierarchy related to popularity of use. For instance, the historic University Arch gateway on north campus is a primary pedestrian entrance from the downtown central business district. The Herty Mall entrance is another primary pedestrian gateway. Both delineate campus edges to downtown and are traversed by a large number of people on a daily basis. The smaller opening to north campus from Broad Street, east of the Arch gateway is an example of a secondary entrance; therefore the design of the physical threshold is much simpler than the grand example of the Arch or Herty Mall entrance. Still less important or less traveled entrances to campus would be considered tertiary gateways, and will have a much simpler threshold design such as a lush landscape planting on either side of the entry point. On the UGA south campus, a primary gateway is the D.W. Brooks Mall entrance, incorporating an ornamental iron fence and granite rubble stone piers and walls. Traditionally, elements used for gateway construction on north campus include brick, cast iron fencing, and masonry stone. Central and south campus gateways are typically characterized by the use of granite rubble, cast iron fences, ornamental iron fences and lush landscape plantings. The cast iron fences are without exception reserved for the historic north and south extreme boundaries, whereas smaller scale, diminutive brick or stone piers are used along the campus edges in the central precinct. The northwest and northeast regions are newer precincts where gateway edges have not been identified. All proposed gateways and gateway materials should be approved on a case-by-case basis through OUA, taking careful consideration of existing surrounding context.

In addition to material selection, scale and proportion are the other most important design criteria when proposing future campus gateways. Proposed improvements should relate to human scale and existing campus context. Always, campus gateways should incorporate lush landscape plantings of trees and shrubs to further define boundaries and contribute to a pedestrian-scaled environment.
Whether for seating, retaining soil, or as a design feature, proposed site walls should be constructed of natural stone or brick. Grey Elberton granite is native to the Athens, Georgia area and should be utilized for wall construction. Low walls should be constructed entirely or granite rubble, and taller retaining walls should have a granite veneer over their structural components. Specific construction detail requirements for site walls and seat walls can be found in 32 32 29 – Stone Retaining Walls.

Granite Rubble Wall – Rankin M. Smith Sr. Student Athlete Academic Center

Granite Rubble Wall – Rankin M. Smith Sr. Student Athlete Academic Center

Granite Rubble Wall – Lamar Dodd School of Art & Georgia Museum of Art
GATEWAYS AND EDGES
CAST IRON & ALUMINUM FENCING

Cast iron fencing may be appropriate on North Campus, near historic structures, and in areas of campus that reflect the historic quadrangle layout of North Campus (e.g. D.W. Brooks Mall). If used adjacent to existing wrought iron fencing, care should be given to match the existing. Aluminum fencing is implemented on campus in areas to help distinguish spaces and provide security.

Cast Iron Fencing – Founders Garden

Aluminum Fencing – Lumpkin Street
Bus Shelters should be located where space is available and the volume of riders and traffic patterns justify their use. The shelters should not be obtrusive to their setting and should be illuminated for safety and partially enclosed to offer protection from wind and rain. Seating areas with trash receptacles should be provided within the shelter. Specific construction detail requirements can be found in 10 73 43 – Transportation Shelters.
Typical pedestrian pathways for University of Georgia owned roadways should be constructed of scored concrete with installations of a tree planting beds along the road’s edge. Brick or granite accents should be used to denote significant locations, such as building entrances and major intersections. Specific construction detail requirements for University of Georgia sidewalks can be found in 32 16 23 – Sidewalks.
PAVING
SIDEWALKS – ATHENS-CLARKE COUNTY ROADWAY

Typical pedestrian pathways for Athens-Clarke County owned roadways should be constructed of scored concrete with brick paver accents on edge.
Porous Concrete

Porous Concrete should be used whenever possible as a substitute for traditional paving. The pavement is made out of pieces of gravel and concrete that has holes, which allows the water to flow through. Underneath the pavement is a layer of gravel that will prevent the ground from becoming saturated and flooding. Examples of porous concrete can be found on Waddell Street and Reed Plaza.

Porous Pavers

Porous Pavers are set in sand and gravel beds. The gaps between the pavers are filled with course gravel that allows water to quickly flow through and infiltrate the soil.

Gravel Paving

Gravel paving also allows water to infiltrate quickly. This treatment is suited for paths that will be strictly limited to pedestrian use. The example shown on the left is from UGA’s Herty Field and is made out of recycled crushed brick.

Specific construction detail requirements for porous paving can be found in 32 14 16.13 – Brick Unit Paving - ungrouted.
To supplement the aesthetics of the University of Georgia, brick pavers are used as accents on pedestrian pathways. The use of inscribed “named” pavers is not permitted on campus grounds. Specific construction detail requirements for brick work can be found in 32 14 16.13 – Brick Unit & Porous Paving - ungrouted.

Brick Work – Reed Plaza

Brick Work (Porous Pavers) – Reed Plaza
The use of tactile concrete pavers with truncated domes to denote curb cuts and crosswalks should be employed in order to promote safety at intersections and comply with A.D.A. regulations.
PAVING
CROSSWALKS AND CURB CUTS – ATHENS-CLARKE COUNTY

The use of tactile concrete pavers with truncated domes to denote curb cuts and crosswalks should be employed in order to promote safety at intersections and comply with A.D.A. regulations.
PAVING
STAIRS AND HANDRAILS

Stairs should be constructed of concrete and should have concrete cheek walls. Exterior site stair risers shall be 6” and exterior stair treads shall be 14”. All portions of stairs shall comply with A.D.A. and other applicable regulations. Specific construction detail requirements for stairs and handrails can be found in 05 52 00 – Metal Railings.

Stairs & Handrails – Lamar Dodd School of Art & Georgia Museum of Art

Stairs & Handrails – Special Collections Library

Handrails – Special Collections Library

Handrails & Adjacent Guardrail – Reed Plaza
PAVING
COMPLETE STREETS

When possible, opportunities to include the objectives and components of complete streets should be included in the project scope.

Complete Streets are safe, comfortable, and convenient for travel for everyone, regardless of age or ability – motorists, pedestrians, bicyclists, and public transportation riders. By routinely responding to the needs of people on foot, public transportation, and bicycles, walking, riding bikes, and riding buses will be safer and easier for everyone.

Complete streets can move more people while using the same amount of road space. Getting more productivity out of the existing road and public transportation systems is vital to reducing congestion. Providing travel choices – walking, bicycling, and public transportation – can reduce the demand for peak-hour travel in cars, the principle cause of daily congestion. A complete streets policy ensures that the entire right of way is planned, designed, and operated to provide safe access for all users.

Benefits
- Increase Capacity
- Improve Safety
- Better Health
- Economic Growth
- Lower Emissions
- Reduce Costs
- Smarter Growth
- Provide Choices

More Information
http://www.completestreets.org

Information provided by the National Complete Streets Coalition
PAVING

BICYCLE ROUTES

Dedicated bicycle routes should be clearly delineated from vehicular and pedestrian traffic through the use of painted lanes and easily recognizable symbols that conform with NACTO Urban Bikeway Design Guide, AASHTO Guide for the Development of Bicycle Facilities, and GDOT’s Guidelines. Along roads shared with motorized vehicles, a four-foot wide lane should be marked on each side of the pavement where possible. Where the road is too narrow to accommodate two bike lanes, a single lane will be designated. If conditions allow, the single lane will be located on the side of the road that runs uphill with the flow of traffic.

If the opportunity arises, the Design Professional should include bike lanes in their projects. This requirement includes instances where bike lane additions only allow for segments at a time.

University of Georgia 2011 Bicycle Facility Study
https://www.architects.uga.edu/sites/default/files/documents/UGA-Bikes_DRAFT.pdf

University of Georgia Bike Master Plan

Bicycle Lanes – North Campus
PAVING
BICYCLE ROUTES

PURPOSE
- Facilitate Implementation of UGA Physical Master Plan Guiding Principles
- Further Integrate Bike Facilities into the UGA Transportation System
- Promote Safe, Efficient and Convenient Campus Travel Options
- Encourage Connection with the Natural and Social Environment
- Improve Local Environmental Quality

LEGEND
- Limited Access Vehicles / Bike Shared
- Existing Bike Lanes
- Proposed Bike Lanes
- Recreational Trail
- "Share The Road" Signage
- Shared Pedestrian / Bikes
- Limited Access - Gated Roadway
When fire truck or emergency access requires a minimum pathway width that is aesthetically undesirable, grass pavers may be used to keep walk width to a minimum while still meeting code.
For use as required to protect buildings from damage by service and emergency vehicles, such as at loading docks and mechanical rooms. For temporary barriers in pedestrian settings, an easy to install, simple post and chain device is required. Specific construction detail requirements for security bollards can be found in 32 39 13 – Manufactured Metal Bollards.
In light of the recent drought, it has become increasingly important to be proactive in the way UGA manages its natural resources. Rainwater harvesting allows the University to supply water for irrigation, cooling towers, and for toilet flushing even under water restrictions.
Green roofs are encouraged as part of new construction to diminish the urban heat island effect, energy bills, and stormwater discharge. They also create habitat for plants and animals and become an aesthetic enhancement to a building. Although there is currently no standard for green roofs, there are a few that exist on campus that may act as guides for future designs.

Green Roof – Geography & Geology Building

Green Roof – Science Library

Green Roof – Robert C. Wilson Pharmacy Building

Green Roof – Lamar Dodd School of Art

Green Roof – Tate Student Center
Instead of funneling a storm’s first flush into pipes, the following systems slow, capture, or infiltrate water back into the ground.

Bioretention

Bioretention systems, also known as rain gardens, are shallow depressions that capture, and then infiltrate water back into the soil. Examples of bioretention systems on campus can be found at Lumpkin Woods along Lumpkin Street, Carlton Street parking lots near the intersection with Sanford Drive, and the Grounds Department at Chicopee.

Enhanced Swale

A bioswale has an under layer of sand and gravel that promotes quick infiltration. Rocks or groundcovers can be used as a surface treatment. An example of a bioswale on campus can be found off of Lumpkin Street, directly south of Tanyard Creek.
Fencing

Where fencing is required, either by code or for security purposes, black, vinyl-coated, chain link fence should be used. In regards to each situation, the height of the fence will be determined by the OUA.

Screen Walls

Screen fences should be constructed of brick of a type and pattern that match adjacent buildings.

Specific construction detail requirements for fencing and screening can be found in 32 31 13 – Chain-Link Fences and Gates.
The University of Georgia campus has streets of many sizes and functions. In order to provide a safe and aesthetically desirable walking environment, each general type of street will have a character that suits its function. The street types are as follows: Publicly Accessible Streets at the Edge of Campus, Publicly Accessible Streets on the Interior of Campus, and Limited Access Streets. Wherever possible, the landscape component of a streetscape should utilize a planted strip separating the sidewalk from the edge of the road. In general, streetscapes should have a simple, orderly appearance. Trees should be arranged in a linear fashion with turf or a low groundcover below. Street trees should be native shade trees, such as Oaks, that will grow over or can be pruned above the height of passing traffic. Designers can also utilize the ACC Tree Species list for references. Additionally, complete street guidelines and recommendations from the UGA 2011 Bicycle Facility Study should be incorporated when possible.
LANDSCAPE
GREEN SPACE

Quadrangles are defined green spaces that act as landmarks along circulation corridors (streetscapes). Buildings primarily define the edges of these spaces. The character of these spaces should be park-like, similar to the quadrangles of North Campus. The planting should be ground cover or grass, and shade trees with multiple paved walkways. Building entrances and other focal points should be accented with shrubs, native perennials. Seasonal color beds should be limited and require approval by UGA FMD Ground Department.

Open Space – North Campus Quadrangle

Open Space – Herty Field

Open Space – D.W. Brooks Mall

Open Space – D.W. Brooks Mall
Naturalized spaces on the University of Georgia Campus are defined as areas dominated by informally arranged vegetation that connects the campus with its natural site elements. Landscape design in naturalized areas should utilize a palette of native plants selected for their compatibility with the micro-climatic conditions on the individual site.

Naturalized Landscape – University Health Center
Naturalized Landscape – Lamar Dodd School of Arts

Naturalized Landscape – Lamar Dodd School of Arts
Naturalized Landscape – Lamar Dodd School of Arts